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;_ ABST.RACT .al,

This reportprovidesthe resultsof a programto investigateand

characterizeseal materialssuitablefor Space_huttleStorablePropel-

j lantSystems.

Two new elaston_ricmaterialswere identifiedas being potentially

superiorto existingstate-of-theart naterialsfor specificsealing

applications.Thesematerialswere..AF-E-I24Dand AF-E-411. AF-E-124D

is a curedperfluorinatedpolymersuitablefor use with dinitrogen

tetroxideoxidizer,and hydrazinebase fuels. AF-E-411_san ethylene

propyleneterpolymermaterialfor hydrazinebasefuel service.

Dataare presentedrelativeto low and i,ightemperaturecharacter-

"zticsas well as propellantexposureeffects. Types of data includedare:

mechanicalproperties,stressstraincurves,frictionand wear character-

istics,compressionset and permeability.Sealingtestswith a flat

poppet-sealvalvewere conductedfor verificationof sealingcapability.

A Seal DesignProcedureis providedwhich containsa step-by-step

procedurefor designingseals. The informationleededfor seal design

is primarilysummarizedand presentedas well as referencesfor more

in-depthinformation.

A planfor a controlledmethodof investigatingcontamination

sensitivityis also presented.

PreliminarySpecificationsfor AF-E-124Dand AF-E-4ll_r__.alsof

provided. Limitedpropertiesdata are also providedfor the follow-

ing state-of-theart sealmaterials: Teflon,KeI-F,Kynar,Vespel,

EthylenePropyleneRubber,Carbo_ynitrosoRubberand Viton.

The bibliographyincludesover200 referencesrelatingto seal

designor materialsand presentsa concisetabulationof the more useful

seal designdatasources.

ii

p maim _ mR

1974005081-004



CONTENTS
:' " Page

,)._"

;J_ 1.0 INTRODUCTION 1-1

_C:,_a_." 2.0 SUMMARY 2-I
"=...." 3.0 PROGRAMDESCRIPTION 3-I

•_ 3.1 Task l - Analysis 3-I
7_."

3.2 Task 2 - BasicScreening 3-4

3.3 Task 3 - Definitionand Development 3-6

3.4 Task 4 - MaterialCharacterization 3-9

3.4.1 Testsand Test Techniques 3-10

4,0 SEALMATERIALPROPERTIES 4-I

:_,;_ 4.1 Descriptionsof MaterialsTested 4-2

4.1.1 AF-E-124D 4-2

:_' 4.1.2 At-E-411 4-6
•._
"-_ 4.1.3 AF,E-41IA 4-8

_" !I_ 4.2 Propertiesand Characteristicsof Tested!,iaterials 4-8
4.2,1 AF-E-124D 4-8

4.2.2 AF-E-411 4-38

4.2.3 AF-E-411A 4-62

4.3 Propertiesof Other SealMaterialsin CommonUse 4-81

4,3.1 TeflonTFE, FEP and Filled 4-85

4.3.2KEL-F /p 4-1134.3.3 Kynar 4-I20
, 4-121

4.3.4 Viton ,_
4.3.5 Vespel _ 4-135

4.3,6 CarboxynitrosoRubber(CNR) 4-146

4.3.7 EthylenePropyleneTerpolymer 4-151

4.3.8 ButylRubber 4-153

5.0 MATERIALCOMPARISON 5-I

5,1 SealMaterialsfo_ OxidizerService 5-I

5,1.1 Teflonand AF-E-124D 5-2

e '

t

] 97400508 ] -005



r CONTENTS(Continued)4.

:" Page

5.2 SealMaterialsfor Fuel Service 5-11

5.2.1 AF-E-411,AF-E-124Dand Teflon 5-14

/ 5.3 Fabricationand Availabilityof AF-E-124Dand AF-E-41I 5-15

5.3.1 AF-E-411 5-15

5.3.2 AF-E-124D 5-17

6.0 SEALDESIGNPROCEDURE 6-1

6.1 PolymericMaterialPropertiesand Behavior 6-I

6.2 Seal DesignProcedure _-23

6.2.1 Procedure 6-23

6.2.2 LeakageModel 6-27

6.2.3 Choiceof Configuration 6-30

6.2.4 DesignProcedure,Steps1 throughIg 6-42to

6-110

7.0 CONCLUSIONSAND RECOMMENDATIONS 7-I

• 7,1 Conclusions 7-I

7.2 Recommendations 7-2

APPENDICES

A. ACKNOWLEDGMENTS A_I

B. EXCERPTSFROMANALYSISREPORT B-l
#

C. CONTAMINAIIONSENSITIVITYTEST PLAN C-l

D. REFERENCESAND BIBLIOGRAPHY D-l

E. MATERIALSPECIFICATIONS E-I

; E-I AF-E-411 E-I-I
E-2 AF-E-124D E-2-1

!

iv

1974005081-006



i_ _ FIGURES
Page

,,_" 3.] CharacterizationTask Natrix 3-7

, 3.2 Test ValveSeal PoppetConfiguration 3-14

_' 3.3 Seal VerificationTest Setup 3-15

_- 4.2.1 AF-E-l_4D Compression-DeflectionCharacteristics 4-24/7"-
,_, at +70_Fand +300_F

•i_ 4.2.2 AF-E-I24DCompression-DeflectionCharacteristics 4-25
_,_ at -lO0°F '

i 4.2.3 AF-E-124DLoad-CycleCharacte_'istic_at 70°F 4-26
" 4,2.4 AF-E-124DO-RingsAfter Exposureto Propellants 4-27

i 4.2.5 AF-E-124DCompressionSet RecoveryRatesAfter 30% 4-28
Compressionat 200°Ffor 22 Hoursin Propellants

_: 4.2.6 N204PermeabilityThroughAF-E-124D 4-29

•_ 4.2.7 Dow CorningWear Tester 4-30

4.2.8 WearRing end Rider 4-30

4,- 4,2.9 AF-E-124DCoefficientsof Frictionin Air 4-31

4,2.10 AF-E-124DCoefficientof Frictio_in 50/50 4-32

4.2,11 AF-E-124DCoefficientsof Frictionin N204 4-32

4.2.12 Wear Comparisonof Teflonand AF-E-411,AF-E-411A, 4-33

AF-E-124D

4.2.13 AF-E-124DBallValveSeal 4-34

4.2.14 SeatStressto ObtainZero Leakageas a Function 4-35
of Temperature

4.2.15 SeatStressto ObtainZeroLeakageas a Functionof 4-36
Numberof Cycles

4.2.16 SeatStressto ObtainZeroLaakageas a Functionof 4-37
PropellantExposureTime "

4.2.17 AF-E-4]ICompression-Deflection,RoomTemperature, 4-48
VariedLoa_Rate

4.2.18 AF-E-411Compression-Deflection+300°F 4-49 -_
v

4.2.1g AF-E-41]Compression-Deflection-100°F 4-50

v t
|

1974005081-007



FIGURES(Continued)

Page

4.2.20 AF-E-411Compression-DeflectionHysteresis 4-51

4.2.21 AF-E-41]CompressionSet RecoveryRates 4-52 ,

4.2.22 AF-E-411O-Ringafter200°F/22Hour Exposureto 4-53
50/50

4.2.23 Permeabilityof Helium,ThroughAF-E-411 4-54

:.2.24 AF-E-411Coefficientsof Frictionin Air 4-55
%

4.2.25 AF-E-411Coefficientof Frictionin 50/50 4-56

4.2.26 WearComparisonof Teflonand AF-E-411,AF-E-4IIA, 4-57
AF-E-124D

4.2.27 AF-E-411Seat Stressto ObtainZero Leakageas a 4-58
Functionof PoppetSurfaceFinish

4.2.28 SeatStressto ObtainZero Leakageas a Function 4-59
of PropellantExposureTime

• 4.2.29 SeatStressto ObtainZero Leakageas a Function 4-60
of Numberof Cycles

4.2.30 Seat Stressto ObtainZeroLeakageas a Functionof 4-61
Temperature

4.2.31 AF-E-411ACompression-Deflectionat 70°F 4-73
t

4.2.32 AF-E-411ACompression-Deflectionat -lO0°Fand +300°F 4-7_

• 4.2.33 AF-E-41IACompression-DeflectionHysteresisand 4-75
Repeatability

4.2.34 AF-E-411ACompressionSet RecoveryRates 4-76 I

4.2.35 HeliumPermeabilityThroughAF-E-411A 4-77

4.2.36 AF-E-411ACoefficientsof Frictionin Air 4-78

, 4.2.37 AF-E-411ACoefficientof Frictionin 50/50 4-79

4.2.38 Wear Comparisonof Teflonand AF-E-411,AF-E-411A, 4-80
AF-E-124D

4.3.1 TeflonTFE StressStrainin Air 4-I01

4.3.2 TeflonFEP StressStrainIn Air 4-102i

_ vi

T,
t

,q. . _ , ,

' 'w ' "" '=
w . • . _ u-

1974005081-008



-_ FIGURE3(Continued)

Page

4.3.3 TeflonTFE TotalDeformationvs Time -65°F 4-103

4.3.4 TFE and FEP Deformationvs Time +73°F 4-]04

• 4.3.5 TFE and FEP Deformationvs Time +212°F 4-]05
%

4.3.6 TFE and FEP Deformationvs Time underTensileLoadat 4-106ElevatedTemperature

I 4,3.7 TFE and FEP DeformationUnder CompressiveLoad+73°F 4-I07
4.3.8 IFE and FEP DeformationUnderCompressiveLoad+212°F 4-108

_! 4.3,9 TFE and FEP CompressiveRecoveryat +73°F 4-109
4.3,10 TFE and FEP CompressiveRecoveryat +212°F 4-110

4.3.11 TFE and FEP LinearThermalExpansion 4-11l
_', 4.3.12 TFE and FEP Coefficientsof Friction 4-I12
_k

i_" _ 4,3.13 Coefficientof LinearThermalExpansion-Kel-F 4-118

4.3.14 StressStrainCurvesfor Kel-F 4-]19

4.3.15 KynarColdFlow Resistance 4-124

4,3,16 KynarLinearThermalExpansion 4-125

4.3.17 KynarTGA Analysis 4__._6 i

4.3.18 VitonA MechanicalPropertiesas a Functionof 4-133
Temperature

4.3.19 VitonA Elongationas 3 Functionof Temperature 4-133

4.3,20 VitonB CompressionDeflectionCharacteristics 4-134

4.3,21 Viton E-60CElevatedTemperatureCompressionSet 4-134
in Air

4.3.22 VitonA and E-60CLongTerm CompressionSet 4-135

4.3.23 VespelTensiIe Strengthvs Temperature 4-I39

4,3,24 VespelModulusof Elasticityvs Temperature 4-]39

4.3.25 Vespel_._-I,SP-21Stress-StrainCurves-Tension 4-140

vii
;

i

1974005081-009



1 .

FIGURES(Continued)

4.3.26 VespeiSp-l, SP-21Stress-StrainCurves-Compression 4-]41

4.3.27 VespelSP-22 Stress-StrainCurves-Compression 4-142
/

4.3.28 VespelSP-I Deformationvs Time 4-143
J

4.3.29 VespelSP-21Deformationvs Time 4-143

4.3.30 VespelSP-22 Deformationvs Time 4-144

4.3.31 VespelSP-Iand SP-22FatigueResistance 4-144

4.3.32 ThermalExpansionof VespelSP-I and SP-21 4-145

4.3.33 ThermalExpansionof VespelSP-22 4-145

4.3.34 Permeabilityof CNR,TeflonFEP and Butylto N204 4-154

4.3.35 HeliumPermeabilityof C)_R 4-155

4.3.36 DinitrogenTetroxideP_rmeabilityof CNR 4-156
q

5.1 Comparisonof AF-E-124Dand TeflonTensileStrength _"
" as a Functionof Temperature 5-5

5.2 AF-E-124DCompressionSet withTime 5-8

5.3 AF-E-124DTensileStrengthRetentionwith
PropellantExposureTime 5-10

5.4 AF-E-411TensileStrengthRetentionwith Propellant t
ExposureTime 5-16

"' 6.1 Variationin Property-TemperatureCurvewithDegree
of MolecularOrderliness 6-9

(

6.2 Variationin AmorphousPolymerCharacteristics 6-12

6.3 Constructionof "MasterCurves" 6-13

6.4 SealDesignProcedure 6-24

6.5 FracturePotentialCalculationProcedureDiagram 6-25

6.6 Approachto GeneralizedsonductanceMappingfor
Leakage_redictlon 6-28

6.7 Extensionof ConductanceMappingto Cover
ContaminationSensitivity 6-2g

vlfi

I I III_I ! ''

1974005081-010



Page

6.8 Deformation Pattern of Complex Seal 6-&]

6.9 Deformation Pattern of Typical O-Ring 6-32

6.10 The Six Fundamental Forms of Seal Cross-Section
_ Configurations 6-34

._ 6.11 Five Basic Types of Seal Loading 6-36

6.12 Four Types of Geometric Instability Encountered in
Polymeric Seals 6-37

m_ 6.13 Seal Problems Caused by Creep 6-38
t,,

_< 6.14 Seal Design Procedure Diagram (Foldout) 6-III

i •
m Ix

n mlmmm NI M I

1974005081-011



: TABLES

Page

4.1-] CompoundingStudiesof AF-E-124D 4-5

/ 4.1-2 Compositionand CureScheduleof AF-E-411 4-6 •

" 4.1-3 Variationsand Propertiesof AF-E-41) 4-I

4.1-4 Formulationof AF-E-411A 4-8

4.2-I MechanicalPropertiesof AF-E-124Din Air at Various 4-17
-. Temperatures

4.2-2 Effectsof Air Agingon AF-E-124DMechanicalProperties 4-17

4.2-3 AF-E-124DMechanicalPropertiesAfter Propellant 4-18
Exposures

4.2-4 AF-E-124DWeightan_ DimensionalChangesDue to 4-19
PropellantExposure

4.2-5 Effectsof AF-E-124Don 50/50Propellant 4-20 "r
p

• 4.2-6 AF-E-124DMechanicalPropertiesAfter CleaningFluid 4-20
Exposure

4.2-7 CompressionSet in Air-AF-E-124D 4-21

4.2-8 AF-E-124DCompressionSet in Propellants 4-22

4.2-9 ThermalPropertiesof AF-E-124D 4-23

4.2-10 PermeabililCoefficien*sfor AF-E-124D 4-23

4.2-11 MiscellaneousPropertiesof AF-E-124D 4-23

4.2-12 MechanicalPropertiesof AF-E-411in Air at Various 4-43
Temperatures

4.2-13 Effectof Air Aging on MechanicalPrupertiesof AF-E-411 4-43

4.2-14 AF-E-411MechanicalPropertiesAfter PropellantExposure 4-44

4.2-15 Effectof AF-E-41Ion Propellants 1-45

4.2-16 MechanicalProrerties_fAF-E-411afterCleaningSolvent 4-45
Exposure

4.2-17 CompressionSet in Air of AF-E-41I 4-45 -.)

• X

m Imml 1

1974005081-012



t

4_. TABLES (Cnntinued)
,_C,.

"" Page

_ 4.2-18 AF-E-4]I Compression Set in Propellants 4-45
.>

_, 4.2-19 The_al Properties of AF-E-411 4-47

_ 4.2-20 ?e_meability Coefficients for AF-E-all 4-47 '

,j 4.2-21 Miscellaneous Properties of AF-E-411 4-47
g
_k

_, 4.2-22 Mechanical Properties of AF-E-4IlA 4-64
!

>_ 4.2-23 Effects of Air Aging on Mechanical Property Retention 4-65

_ 4.2-24 AF-E-411 Mechanical Properties After Propellant
_ Exposure 4-66

4.2-25 Effect of AF-E-411A on Propellants 4-67

4.2-26 AF-E-411A Mechanical Properties
After Cleaning Fluid Exposure 4-68

4.2-27 AF-E-411A Compression Set in Air 4-69

4.2-28 AF-E-411A Compression Set in Propellants 4-70

4.2-29 Thermal Properties of AF-E-411A 4-71

,, 4.2-30 Permeability Coefficient for AF-E-411A 4-72

- 4.2-31 Miscellaneous Properties of AF-E-411A 4-72

4.3-I RepresentativeMonopropellant Hydrazine System Valves 4-82

, 4.3-2 RepresentativeBipropellant System Valves 4-83

_ 4.3-3 Valves in Advanced or Non-OperationalSystems 4-84

_ 4.3-4 Mechanical Properties of Teflon and Filled leflon Resins 4-96

4.3-5 Teflon and Selected Filled Teflon P.V. F_ctors 4-97

4.3-6 Sources of _'ropertiesData for Teflon 4-98

_ 4.3-7 Effects of Propellant Exposure on Teflon TFL 4-99

4.%8 KeI-F (81) Plastic, Mechanical Properties 4-1_5

_ 4.3-9 Permeability of KeI-F (81) Plastic 4-116

4.3-10 Propellant and Solvent Resistance of Kel-F 4-I]6

xi

n _ m

1974005081-013



TABLES (Continued)

Page

4.3-11 Physical Properties of Kynar 4-122
?

4.3-12 Effects of Propellant and Solvent Exposure on Kynar 4-123

4.3-13 General ProDerties of Various Viton Compounds 4-]30

4.3-14 Propellantand Solvent Effec on Viton A or B 4-]31

4.3-15 Mechanical Properties of Viton E-60C 4-132

4.3-16 Compositionand Characteristicsof Vespel 4-136

4.3-17 Vespel Mechanical Properties 4-]37

4.3-18 Coeffic_tnt of Friction and Wear of Vespel 4-138
d

4.3-19 Propellant and Solvent Compatibilityof Vespel 4-138

, 5-I Comparison of Seal Material Properties for N204 Service 5-4

5-2 Comparison of Properties of Materials for Fuel Service 5-12 a

6-I Summary of Factors Affectir_gNon_Metallic Seal
Durability 6-2

6-2 Summary of Critical Parameters for Non-Metallic Dynamic
Seal 6-4

6-3 Summary of the Most Critical Parameters for Non-Metallic
Static Seals 6-5 t

6-4 Summary of the Most Critical Parameters for Non-Metallic
Poppet Seals 6-6

6-5 Summary of the Most Critical Parameters for Non-Metallic
Ball Valve Seals 6-7

6-6 Approximate Machining Precision of Metal Parts c_ CRES 6-56

6-7 Specific Surface Finish Recommendations for Initial
Design Point 6-59

6-8 Approximate Maximum Scrubbing Lengths 6-66

6-9 Stress in Rubber Seals 6-70

6-10 Flow Potential Parameter "B" 6-84 "_

xii

I
milil_ _ - i . - --

1974005081-014



0
.I

o

£
c"

', , O'

i

r

i
J

nunnnnmm_ _ I/

1974005081-015



1.0 INTRODUCTION

_'- Seal_ for Space Shuttle storable propellant applications have the
.

; unique problem of extended life durations over those required f3r pre-

;._'_ vious applications such as Apollo. This requires the capability of
>

( extended exposure to propellants and a higher number of operating c.:les.

The minimum shelf life (installed) is anticipated to be seven years, and

_ the service life, five years. In addition, the operational concept does
;_; not provide for flushing or decontaminatingbetween missions although

_ this must be considered a possibility.

Present state-of-the-artmaterials which could be used each have

._ one or more deficiencies, particularly for oxidizer applications. Through

_ previous programs oriented toward cryogenic seal development (Contracts

NAS 9-I1866, NAS 9-I0481, and NAS 9-12500) new elastomeric materials have

i been identified which appear promising for storable propellant appli-

cations. Some data from those programs, particularly NAS 9-12500, are

_- included in this report. This program was oriented toward further

: _" investigationand characterizationof these types of materials, and

_ comparisonwith existing state-of-the-artseal materials.

_ The objective of this program was to evaluate, investigate and

_i characterize seal materials and designs which would be suitable for

long-term use in Space Shuttle earth storable propellant systems. The

propellants of interest are nitrGgen te*roxide (N204), hydrazine (N2H4),

unsymmetrical dimethylhydrazine(UDMH), 50/50 blend of hydrazine and

unsymmetrical dimethylhydrazine (N2H4/UDMH), and monomethylhydrazine(MMH).

The range of temperatures investigatedduring this program were

from -lO0°F to Other factors considered were: effects of long-

term propellant exposure, effects of cleaning solvents; mechanical

property retention and combinations of these factors.

I
I-I

=
JIm

1974005081-016



I This report presents the results of this program and provides
,4 _v,,,,:,,_,u._ fo_-further seal maLemal and design development. In-

: cluded in the report are the results of the state-of-the-artsurvey
t

of seal materials; the analysis of critical seal parameters; a compilation

of the test data obtained in this program and the previous cryogenic

seal program under contract NAS 9-12500 and a summary of data relating

.'_ to other state.of.-the-artseal materials not tested under this program.

A seal design procedure guide has been prepared as part of this

: program, providing a compilation of reference data and techniques for

seal design.

The seal design problem is, to a large degree, a function of

available materials. A major problem in designing a seal is to accom-

,_w)dateor strengthen basic seal material weaknesses. An improvement

in material properties and characteristicscan greatly reduce the

• complexity of a seal design. During the course of this proa_m,

emphasis was placed on improving the seal material to a realistic

maximum and then characterizing the material to determine its per-
Jformance limitations.

I-2
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_ 2.g SUMMARY

"_ The purpose of this program was to develop and characterize seal mater-

_ _:i.. ials and to provide design information for Space Shuttle Storable Prooellant
)_ ,

_. sealing applications. As a result of previous programs (Refs. 89 and 90)

_ the effort was oriented toward non-metallic seals including improved elasto-

_ meric materials. Two elastomeric materials were identified as most promis!nq

and were characterized to allow evaluation oi capability as compared with

the best state-of-the-artmaterial, Teflon. Teflon has proven to be a good

general seal material for storable propellant applications, as shown by the

many designs for which it has been selected. Typical cases are summarized

in this report. The primary advantages of Teflon are its relative inertness,

_' and generally high retention of mechanical properties over a wide range of
L-

#. conditions. Disadvantages include a tendency to creep under load, a tendency

" _ toward contaminationsensitivity (dependent upon design) and a tendency to

_, flake under wear applications.
T

The basic adcantages of elastomeric materials (as compared with Teflon)

are resiliency, and the ability to "recover" after being compressed for long

periods of time. Another advantage is a tendency toward greater contamina-

tion tolerance, although this parameter was not investigated as part of this

program.

The program results show that AF-E-124D is a suitable seal material for

either nitrogen tetroxide oxidizer or hydrazine base fuel service. Good

mechanical and chemical property retention were demonstrated over varying

time periods. A limitation of AF-E-124D is reduction of mechanical proper-

ties at elevated temperature. Although no chemical change occurs, mechanical

property reduction above approximately 2OO°F must be accommodated i:,design.

AF-E-411 appears to be an excellent material over the tested temper-

ature range of -I00° to +300°F and in contact with hydrazine base fuels.

Both chemically and mechanically, the material is stable and u_eful as a

seal r,laterial.

t
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i

In areassuchas long termpropellantexposureundercompression, .

bothmaterialsare good,with AF-E-124Dexhibitingsomewhethigherper-

manentset thanAF-E-411but both beingsuperiorto Teflon.

Anotherelastomer,AF-E-4IlAwas testedduringthis program. This

materialis AF-E-411with an antioxidantaddedto improveelevatedtemppra-

/ ture capability.The propertiesare similarto AF-E-411but indicateno

'_ appreciableimprovementand as such is not recommendedover the previously

mentionedelastomers.

Data are presentedfor AF-E-124D,AF-E-411and AF-E-4llArelatedto

the following:temperatureexposure,air aging,propellantexposure,

cc::_pressionset, stress-strainat varioustemperatures,compressionset

(longtermand elevatedtemperature),permeability(gasand propellant)

frictionand wear.

Comparabledata,but in lessdetailare presentedfor state-of-the

art sealmaterials_Teflon,Kel-F,Kynar,Vespel,EthylenePropylene

Rubber,CarboxynitrosoRubberand Butyl Rubberand Viton.

A contaminationsensitivityinvestigationplan is presentedinclud-

• inga techniquefor controlledevaluationof relativeeffectsof various

configurationcontaminantparticles.

The sealdesignprocedureoutlinesa step-by-stepprocedurewhich

is followedfor all sealdesignapplications.It outlinesmethodsto

determinewhethera particularstepshouldbe utilizedfor the designin

question;how to performthatstep;and the fail/passcriteriaby which

the resultsmay be assessed.

A comprehensivebibliographyis includedof over200 references

relatedto sealdesignor seal performance,for informationon specific I
subjectsnot coveredin detailin this report.
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' " 3.0 PROGRAMDESCRIPTION

_ _. The program was organized and oriented toward identifying suitable seal

<,. materials,developingmaterialsand testingsealmaterialsand designsfor

, _; extendeduse with storablepropellants.Includedin the programwere the

._: following activities:

- o Surveyof sealingtechnologyand assessmentof state-of-the-art

" _' of sealing

• Determinationof criticalmaterialand designparamefers

• Screeningevaluationof candidatematerials
-y

• Long-termtestingof candidatematerials

• Materialcompoundingto improveproperties

m Materialcharacterizationto determinematerialproperties
and characteristics.

" _'_ The programwas organizedintofive taskareas (originallyseventasks

_.!_ ,_, beforea reductionin scopeoccurred). These taskswere identifiedas:

• _ Task I - Analxsis. Thistask includeda seal technologysurvey;a

,_' determinationof criticalmaterialand designparameters;and a summaryof

state-of-the-artin seal technology.

Task 2 - BasicScreening. Designedto performan initialevaluation

of materialcapabilityto performunder anticipatedSpaceShuttleconditions.

• Task 3 - Definitionand Development.A planningand evaluationphase

for materialcharacterizationtesting.

lask 4 - MaterialCharacterization.Conductingteststo characterize

materialproperties.

Task 5 - Documentationand ReRortingTasks.

3.1 Task l - Anal_,s!s.. As identifiedabove,the basicgoalsof this task

were to su.-veyand assesssealing technology. This was accomplished through

a state-of-the-artsurveyand evaluationof seal designfactors. The end

3-I i
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result of this task was an Analysis Report, issued on 6 November1972; TRW

_ Report Number 72.4781.6-262 entitled, "Analysis Report, Space Shuttle Seal

" MaLer.idland DesignDevelopmentfor EarthStorablePropellantSystems,"

(Ref.86). Applicableportionsof this reportare includedas AppendixB.

The sealingtechnologysurveywas conductedutilizingresources

obtainedduringa previousprogramfor cryogenicseal development(Contract

NAS 9-12500)and augmentedwith a reporton storablepropellantapplications.
The facilitiesef WESP_AC(WesternResearchApplicationsCenter)were used

originallyfor a comprehensiveliteraturesearchon sealsand sealmaterials.

Thiswas supplementedby a DefenseDecumentationCenter(DDC)literature

search,U.S. Departmentof Commerce(MaterialTechnicalinformationService)

search,TRW Systemslibrarysearch;componentvendorcontacts,and contact

with industrialand governmentsources.

An evaluationof criticalsealparameterswas conductedunderContract

NAS 9-12500and reportedin Reference88 for cryogenicsealsand materials.

This evaluationwas expandedand revisedwith respectto storablepropel-

lantsealapplicationsand presentedin the "AnalysisReport"(Ref.86) for

the program.

The "AnalysisReport"is a lengthydocumentsinceit alsoincludes

abstractsof referencedocuments. As such,excerptsare providedin

AppendixB of themajor portion.

: The followingconclusionswere reachedas a resultof the investi-

gationsand evaluationsduringthistask (seeAppendixB for more detailed

; informationrelatedto theseconclusions).
4

(A) A relativelylimitednumberof polymericsealm=terialsa_e

: availableand havebeen usedin the past for storablepropel-
lant sealingapplications.The most commonpolymericseal _

I materialby far has beenTeflon. Teflonhas manyadvantagesand

i somedeficiencies,but in generalhas been an excellentseal

! materialformost past applications.The use of Teflonhas per-

i mittedoxidizerapplicationswith not otherwisepossible. TheN204

i 3-2
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l major deficiencies noted with Teflon seals are the "cold flow"
or contin_Jing deformation under load, and a lower tolerance to

"_J.-il contaminant particles than el as tomers . These and other lesser

_" problem areas may limit cycle life and could compromise a long
,'_'
'_- term, low maintenance concept for Space Shuttle components.

" For advanced systems or systems now in fabrication, two new materials

_i_- have been identified ar.d developed by TRWSystems through contracts with
the Air Force Materials Laboratory, Wright-Patterson AFB, and later with

NASA Johnson Spacecraft Center, Houston. These materials are:

AF-E-411

An advanced EPT/HYSTL compound superior in molding and fabri-
cation properties to AF-E-I02. It is being used in mono-

il propellant hydrazine spacecraft propulsion systems. Among• _ these are: Atmosphere Explorer (Orbit Adjust Propulsion System)
(NASA), Fleet Sat Com (Navy), DSP (Air Force).

".._; AF-E-124D
",_}

_ _ A cured perfluorinatedpolymer described in detail in thisreport for oxidizer service. Being applied to the Delta
engine of the Thor-Delta booster.

Other seal materials commonly in use, both current and past, are:

Carboxvnitroso Rubber (CNR)

Oxidizer applications only and relatively limited due to low
mechanical properties.

Butyl Rubber

Generally used with fuels only (some limited oxidizer use in
past). Has proven satisfactory in fuels but not in common
use Pow because of decompositionof propellant and degradation !
of elastomer over ,ong term. !

Ethylene-PropyleneRubber (EPR)

Superior to butyl rubber for fuel applications.

KeI-F

Used with N204 oxidizer in limited applications.

3-3
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,_. Kynar

;. A themloplasticusedfur shorttermor vaporexposureto fuels

N204,limitedapplicationdue to lackof longtermcompatibility.

Ethylene-PropyleneTerpoIxmer/HYSTL

A compounddesignated as AF-E-102 has been successfully used in
! monopropellanthydrazinespacecraftpropulsion.

CB) Determinationof criticalsealdesignparameterstendsto be a complex

problemas is the designof a specificseal. A genera]listof

criticalparameters,ratedby _egreeof criticalitywas determinedto

' be impracticalif not impossiblesince in the majorityof casesit is

configurationor applicationdependent. A summationof the most

criticalparameterswas establishedas a functionof typeof seal or

function. These are presentedin Tables4-6 through4-9 of AppendixB.

Critica_parametersincluded:

Inertness

ContaminationSensitivity _

PermanentSet ..3

TemperatureEffects

Permeation

In specializedcases,surfacefinishes,valvestroke,sealingloadand

pressuredifferentialsensitivitywere consideredcritical. Hardness

was consideredimportantin each casebut not a criticalparameter.

3.2 Task 2 - BasicScreening

The purposeof this taskwas to permitan initialevaluationof material

capabi]ityand the potentialof each candidatematerialto performas a seal

material. Basedon the resultsof previousprograms.(Refs.89 and 90) the

,,laterialsselectedas candidateswereAF-E-124D(forfueland oxidizer

service)and AF-E-411for fuelservice. Modificationsof thesematerials

were investigatedbothduringthis programand previousprograms. Pertinent

resultsare reportedand discussedin Section4 of thlsreport.

D
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Z The materials investigated during this phase of the program were:

AF-E-4ll

AF-E-4]I with lO parts of Kaydol (a mineral oil to improve
low temperature properties)

AF-E-41I with ?_ parts of Kaydol (a mineral oil to improve
low temperature properties and reduce compression set)

AF-E-411 with l part of Age-Rite Resin D (an antioxidant to
, improve elevated temperature)

AF-E-411 with 3 parts Age-Rite Resin D (added to improve
:* elevated temperature - later designated AF-E-411A)

AF-E-124D

Compounding studies of AF-E-124D were conducted previously under

_ Contract NAS 9-12500. The following additives were investigated:

_ Krytox (a perfluoroether)

_ Krytox and Teflon Powder

_" _" Teflon Powder

DC-440 (a Dow Corning Silicone rubber)

LS-422 (phenylvinylsilicone rubber)

Silene (hydratedsilica)

HAF-HS (small particle size carbon black)

SAF (larger structure carbon black) ._

As a result of this im estigation it was concluded that compounding

does not appear advantageous in improving any properties of AF-E-124D.

The base polymer exhibited the optimum properties.

As part of this task, materials in the form of tensile specimens

and compressed O-rings were placed in long-ter,_storage to obtain as

long a period of exposure as possible. Ine majority of the screening

tests were completed early in the progr._mwhile the long-term testing

continued throughout the program.

I_ As a result of this task, three materials were selected for charac-
terization during Task 4. These materials were: _

3_5 i
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J_

- AF-E-4I 1
F

AF-E-411A (AF-E-411with 3 parts _f Age-Rite Re_i,_:D
," antioxidant resin}

AF-E-124D

/ 3.3 Task 3 - Definition and DeveloEment

q This task evaluated the results of the screening task and determined

the approach to be taken during the characterizationtask. A matrix for

the materials to be tested was developed based on the c _ical parameters

and material properties not presently available. This plan was described

in the "Material Evaluation and Compounding Plan," Report Number 72.4781.6-

284, 20 November 1972.
t

The tests planned are summarized in Figure 3.1 and include mechanical

properties and functional properties.

x

I
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3.4 Task 4 - Material Characterization
A.

:: ;" _ The tests planned during the previous task and sunvnarizedin Fiour_ q l

were conducted during this task. Characterizationof the selected mater-

ials was performed over a wide temperature range and with the propellants
#.

e. of interest. The details of the tests to be conductedwere outlined in
h X.

": TRW Report Number"72.4781.6-284 and are described here rather than include/

_ trmatreport, and also to describe tests and peripheral information not pro-

vided in that report.

Two basic types of tests were conducted: Mechanical and Physical

and Parametric Tests. Inese tests conductedProperties of Platerials; were

__ at ambient temperature in air or propellant as applicable_ and at low er

_'_ elevated temperatures. The propellants used were nitrogen tetroxide as

_ the oxidizer and 50/50 mixture of UDMH and hydrazine usually as the fuel,

this being considered generally a worst case condition. The only exceotions

. to the use of 50/50 is where a larger prior data base has been obtained with

, N2H4 through previous tests and a better evaluation of relative properties

would be obtained.
I

• _" As snown in Figure 3.1, the test parameters were:

!i Mechanical Properties

e Compression - Deflection as a function of load rate and temperature

• Compression set as a function of load time, temperature and
:_ propellant exposure

• Compression hysteresis as a function of cycling

e Tear strength as a function of temperature
i

e Stress strain as a function of temperature and propellant exposure

e Hardness, swelling and weight change due to fluid exposure

• Material effects on propellant

Physical Properties

e Coefficient of thermal expansion

e Coefficient of friction (static & dynamic) against stainlesssteel in air and propellant

3-9
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e Stress strain after elevated temperature exposure
F

e Ther,_gravimetric analysis in alr

e Effect of vacuum exposure

e Permeability to helium and propellant
/

• Sealing load as a function of surface finisn and propellant exposure

In addition, investigation relative to controlleG methods of determininq

contamination sensitivity, and basic effects of contaminants were conducted.

These resulted in a possible test technique for determining contamination

" sensitivityof a material or design. This test plan is described in

Appendix C and the work conducted during this program is discussed in

Section 5 in conjunction with the Seal Design and Material Guide discussion.

3.4.l Tests and Test Techniques

, Mechanical Properties

Compression - Deflection - ASTMD395 buttons were used for test. In

some cases, plied-up slab stock was prepared to conform to the same

• specimen dimensions. Using an Instron testing machine, the specimens
I

were compressed to about 50% deflection at three decades oF loading rate.

The load was recorded to allow construction of load vs percent compression

plots. These tests were conducted at _hree temperatures ranqinq from

-lO0°F to +300°F.

Compression Set AMS 3304-214 O-rings were prepared from seal

materials and compressed 25% and held for at least three time periods at

three temperatures. Measurements were taken before and after test and

compression set calculated.

Compression Hysteresis - ASTM D395 buttons or slabs plied-up to the

same dimension were compressed using the Instron testing machine to approx-

imately 40% deflection, plotting l_dd/deflection. Rate of loading was the

intermediate rate used in the previous compression/deflectiontests described

above. The sample was repeatedly loaded and unloaded up to lO0 times. A

plot was made to determine hysteresis and change in load characteristics.

3-10
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_m Tear Strength - ASTMD624 Die B specimens were cut from molded sheets

of the seal material These specimens were mounted in an In_f_nn *_

machine fitted with a constant temperature chamber surrounding the test

specimen. Each specimen was conditioned at temperature For at least 20

minutes. At 20-inch per minute crosshead spe_d, the specimens were tested

and the tearing force calculated. The test was performed on triplicate

specimens at ambient and +300°F. Low temperature tests proved impractical

since specimens would crack rather than tear.

Stress/Strain - ASTMD412 Die D specimens were cut from molded sheets

of each seal material Triplicate specimens were tested at 20-inch per

minute crosshead speed. Modulus at I00% elongation, tensile strength at

break and elongation at break was recorded for each specimen. Tests were

performed at three temperatures ranging from -I00 ° to +300°F, and with

specimens after exposure to propellants and to air aging.

Hardness, Swelling and Weight Change - Specimens were exnosed to

propellants for varying periods of time to determire chanqes.

_" _ Effect of Seal Material on Propellant - Triplicate ASTMD1708 micro-

_ _ tensile die specimens were used for this test. These _pecimens were

cleaned with isopropyl alcohol, dried and placed in containers with

propellant, Containers were sealed and temperature increased to the

maximum feasible for the propellant. Pressures were moaitored during the

storage period. The propellant was analyzed for non-vnlatile residue (NVR)
t

and assayed. All data - pressure, NVR and a_say was compared with control

propellant from the same source of supply.

Physical Properties
(

Coefficient of Thermal Expansion - The coefficient of thermal expansion : I

of each seal material was measured over the temperature range of -40° to

+300°F using a quartz rod dilatometer.

Coefficients of Friction and Wear - The static and dynamic coefficient

of friction in air, at low and high temperatures and in propellantswere •.

determined with a Dow Corning wear tester. A circular ring which has the

seal material molded on it was placed in contact with a stainless steel

rider, and using a ro_ary motion, the coefficients are determined. For

3-11 i
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_ wear determination an oscillatory motion of the ring was used to simulate _.

.............. _ _,,o,, experienced by a ua,, valve or shaft sea]. Wear rate

was determined by weight loss as a function of number of cycles.

Stress/Strain After Elevated Temperature Air Aging. ASTMD412 Die D

specimens of the mate:'i_l were stored in a circulating air oven at 300°

+ lO°F for I00 hours. Stress/strain properties were measured after this

exposure and con.pared with data from unaged control specimens.

TGA in Air - Thermogravimetric ,,,_alysis (TGA) was measured under

adiabatic cenditions with a 3°_ per minute programmed heating rate. The

weight loss (or gain) of the material in air was plotted continuously

between ambient room temperature ano _ne temperature at which a severe

weight loss occurs.

Effect of Vacuum - Pre-weighed specimen_ of seal materials were

exposed to a vacuum (1.5 x 10-5 torr) _t ambient room temperature. The

samples were weighed after an exposure period of 168 hours

Permeability - Uncompressed specimens oi cured seal material were -_
• subjected to helium and propellant permeability testing at ambient room ""

temperature. For hydrazine base fuels, the propellant was placed in the

upstream side of the test membrane and a nitrogen sweep conducted the

permeated propellant into a glacial acetic acid scrubber. At approxpriate

times the acetic acid was titrated with O.IM perchloric acid to a quinal-

dine red end point (pH 3 to 4). Total bases were calculated and a plot of

permeability vs. time constructed. For nitrogen tetroxide, a closed

system was used with the propellant upstream of the test membrane and a

transducer moinitoring pressure in the downstream volume. Using the Gas

Laws and knowing the dissociation equilibrium of nitrogen tetroxide at the

test temperature, the concentration of oxidizer permeating per unit time

was determined.

Seal Load Requirements - A commercial valve was nw)dified for use as

a seal tester to provide a demonstration of sealing capability and gener-

ally verify the characteristics of the selected materials. The seal con-

figuration was used as a simple flat popoet type seal. Seals of both

materials (AF-E-124Dand AF-E-4ll) in various test conditions were used. _

The seal material was used as the seat, with a flat metal poppet as the

i_ 3-12l m i "l
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P "_ttng element as showntn Figure 3.2. The seal diameter was nominally

Ii; ! i inch diameter with an 0.050 inch width. One variable was the poppet

• surface finish, while others were temperature, propellant exposure and

numberof cycles.

,\
VALVEBODY

VA*I_LESU_FACE_. \ \" \

FINISH- POPPET X X

\ _ SEAL

!

Figure3.2 TestValve Seal PoppetConflguratlon

The test setup ts shownschenattcally tn Figure 3.3. Pneumat_

pressure was used to load the seal, and to determine the seat loading.

Gaseousnitrogen was also app,ied to the seal area with flow being
_

measuredwtth a rotometer type flow meter. The valve was slowly closed o:

unttl no flow was seen wtth the flow meter. Leakage flow was then _i

measuredwtth the ltqutd f111ed ptpette and seat stress Increased until i
no liquid movemnt tn the ptpette was seen. Thts point was deftned as _

"zero leakage" for thts test series.
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Figure3.3 Seal VerificationTest Setup
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;: 4.0 SEAL MATERIAL PROPERTIES

• 4"

"_.: This section presents information on the materials tested during

_ this program, including where applicable, information from other sources.x_

_ Section 4.1 describes the characteristics of the materials tested_S,
_: (AF-E-124D AF-E-411 and AF-E-411A) In Section 4.2 the test data are

' •

_ . _; presented by material, and include both the results of the screening

_: tests and the characterizationtests. As the test program was structured,

_ many tests were intended to determine the ]imits of the material as a

_. basis for comparison, and not necessarily reflect intended service con-

"_ ditions. As such, tests for 20 to I00 hours under severe test conditions

_ are meaningful in determining material limitations and modes of degradation,

._," but probably exceed anticipated service conditions.

_& A compilation of data on other currently used polymeric s_als is

, provided in Section 4,3 and compared to the materials tested during this

" _ program in Section 4.4

_" _- Since abbreviations are used throughout the report a glossary oF:? -"

• :_, terms and abbreviations is provided in Table 4-I.

Table 4-I. Glossary of Terms and Abbreviations

Abbreviation Meaning

Tb Tensile strength at break in pounds per square inch

Eb Elongation at break in percent

Mlo0 Stress at lO0 percent elongation in pounds per squarm inch

pli Pounds per linear inch, (used in tear strength)

Shore Hardness scale (used for soft materials)

NVR Nonvolatile residue !

TGA Thermal gravimetric analysis

Tg Glass transition temperature
TR-IO Temperature at which a material recovers iO percent after

being stretched and frozen. (ASTM Method D-1329-60)

50/50 A 50 percent mixture of hydrazine and unsyn_etrical

dimethylhydrazine (50/50 N2H4/UDMH)

g or gr Grams

CC Cubic centimeters

Phr Parts per hundred of Rubber

4-I
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;., 4.1 Descriptionsof MaterialsTested .-
_.

Threematerialswere identifiedduringthis programas being improved
k

materialsfor oxidizeror hydrazinebase fuel service. Thesematerials

are: AF-E-124D,AF-E-4lland AF-E-411A.

/
4.1.1 AF-E-124D

AF-E-124Dis a materialinitiallysuppliedby the Air ForceMaterials

Laboratory,Elastomersand CoatingsBranch,for u_e on thisprogram. Sub-

s_quentlythe gumstockwas supplieddirectlyto TRW from the manufacturer,

the E. I. du PontCo. Inc. This gumstockis thencuredand moldedto the=

'i finalfurmby TRW.

AF-E-124Dis a terpolymerof Tetrafluorethylene,Perfluoro-

methylvinylether,and a fluorinatedmonomerusedas a crosslinking

site. The resultingpolymeris fullyfluorinated(or perfluorinated).

The compositionof AF-E-124Dis: approximately60% TetraflGoroethylene

(TFE),approximately40% Perfluoromethylvinylether (PMVE),and up to

2% Perfluorophenylvinylether (PPVE). Schematicallythisis shown

below:

CF2:CF2+CF3OCF:CF2+CF2=CF(OCF2CF)xhCF3

(TFE) (PNVE) (PPVE)

; _60% M/M _40% M/M _2% M/M

1
---_CFzCF2-)----{-CF2_F)----(CF2CF-F---

CF3

4-2
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. .. c: _ The gumstock is then cured by a bimolecular condensation of the pendant

_ .... _^Ide (PEO):v perfluorophenylwith a potassium alkoxide of polyethy!ene _v"

" KO(CH2CH20) K
y_
,, n

.- according to the following cure and post-cure schedule:

. _ Press: 30 minutes/177°C (350°F)

> _ Air Oven: Room Temperature to 150°C (300°F)
over 4 hours

_: 24 hours/150°C (300°F)

24 hours/177°C (350°F)

24 hours/204°C (400°F)

_- Raised from 204°C (400°F) to
285°C (550°F) over 6 hoursZ,.

_. 24 hours/285°C (550°F)

, The reaction occurs at the para position of the perfluorinatedphenyl

ring as shown below:

; _ / F

• _0_ F + KO(CH2CH20)nK

_400°F Final Cure

, /F _I2KF F_

_0-- -O_(CH2CH20). n _0

4-3 i
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;: This resultsinthe curedperfluorin_tedelastomerdesignatedas

_' AF-E-124D. Edcnstep in the curingproce_ (includingmolding)is

highlycritical,with any deviationsresultingin a finishedproduct

with varyingcharacteristics.To date,the only materialdesignated

as AF-E-124Dhas beenmade by TRW becauseof thiscriticality.The
/

base gumstockmay be obtainedfrom E. I. du Pontde Nemoursand Co.

(du Pont)but shouldnot be designatedAF-E-124Duntil the finished

productis characterize_ond determinedto have similarpropertiesto

thosein thisreport. A _inishedproductis also providedby E. I.

. du Pontusing the samebasegumstock. This productis designatedby
du Pontas ECD 006. No indicationhas beenmade of thismaterial's

propellantcompatibility,nor is thereany intentto do thisby

du Pont. The purposesforwhich thiscommercialgradematerialis

usedare otherthan storablepropellantsealapplications.The

methodsand controlsusedfor curingECD 006 ame not availablefor

thisreportand may be proprietaryto du Pont.

In contrastto other fluorinatedelastomerswhichare not fully

, fluorinated,the perfluorinatedelastomersare closelyrelatedto the ,

Teflonpolytetrafluorethylene(TFE)familyof plastics. Chemical

inertnessand thermalstabilityof Teflon,conW}inedwith the resilience

and complianceof an elastemermake the perfluorinatedelastomers

attractiveas sealmaterials. Flexibilityis built intothe polymer

by the pendantmethylethergroups,withoutsignificantlydecreasing t

the chemicalresistanceof the molecule. The creepor '_coldflow"of

TFE relativeto thermosettingelastomersapparentlyhas beendecreased

in AF-E-124Dby introductionof a relativelyreactive_,onomerintothe

polymerto providea site for curing. Linearpolymerssuch as TFE,

other thermoplasticsand uncuredelast)mers,are susceptibleto stress

: inducedcreepas the polymermoleculescan slipover one another.

Crosslinkingreactionsdevelopa three-dimen¢ionalmatrixof chemically

bondedmoleculeswhich reducesslippageconsiderably.Thismaterialis

also present'yunderstudyat TRW Systemsas an elastomercompatible

with chlorinetrifluoride(_,.derAir ForceContractPio.F33615-70-C-

1514). While the elast_mericpropertiesof thismaterialare not as

evidentas thoseof otherelastomerssucha_ AF-E-4ll,the materialis _

4-4
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. _ classified as an elastomer and is chemically resistant because of its

:,,. perfluorinated backbone.
-" e'

_ The cure reaction used for AF-E-124D, on the other hand. results

in covalent linkages which are resistan: to creep. While creep can be

,i accommodated to some degree by design, a highly _hermoplasticcrosslink
/

:, network is regarded as a serious deficiency for a seal material.

:, _ AF-E-124D is a relatively expensive material, but is ap_roximateiy one-
q-

tenth the cost of the only other elastomer potentia|ly useful for

_. oxidizer service, carboxynitroso rubber (described in Section 4.3)

, :_ Investigationswere conducted with various types of plasticizers

_ and reinforcing agents to improve AF-E-124D mold flow prior to cure,

_ and resistance to creep after cure but the additives were not found to

! be advantageous. (Much of this work was conducted under _ prior con-

tract, NAS 9-1250D "Se_l Material and Design Development Program")

,. Generally, _he plasticizers degraded mechanical and chemical

properties while reinforcing fillers stiffened the ma+erial excessively.

_ Table 4.1-I summarizes the investigation results, following this

• _: "" activity, it was determined that AF-E-124D without additives was the

¢ optimum material for further characterizationtests.

i Table 4.1-I. Compounding Studies of AF-E-124D

"L.' ,.,._m,.

• ...... l | l

A_ht|ves (Parts Nonc Krytox,lO Krytox,IO T-SA,IO D_-440,I_ i.q422,10 S_leneO,lO HAF-HS,IO SAF,IO
|,er 100 of 124D) (Control) 1-8A,10

Processabllity Standa_ Best Poor Poor Slight Very lery _or_t Worst
of Improve. Poor Poor

Comparison ment

a .
Appearance - Ttanslu- Translu. Trans1,,- Trdns|u- Opaque, PoorDis- Poor Dis- Very Very
Linear Shrinkage cent c_nt cent/ cent Poor Dis- _ersion pers_on RGJgh Rough I

13% _ 0% Fibers 8; persion 12% 8% 8_ _. ,'.

........... 2L ........ 12_--.....................
i Properties

Modul_|at 100%, 575 500 2600 - 500 1000

Tens_tStrength' 2500 3000 2600 2500 800 I1_ 150G Z800 _000
r_

Elongation, % 180 210 I00 75 140 110 90 90 90

Tenstle Set, % 6 12 8 7 _ 3 O 5 5

Shore A 80 80 90 90 70 _5 90 90 90

. i |1

(a) Krytox blo_....,_from the rubber (low stabIIIty_ upon standing.

4-5
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4.1.2 AF-E-411

AF-E-411, a peroxide-cured EPT (ethylene-propylene diene terF_lymer)

compound, was developed under Air Force Contracc F33615-71-C_1233 specifi-

call _or hydrazine seal service. This material is generally identified

as an EPT !ethylene propy]ene terpolymer)-HysLl (1_ 2-2 polybutadiene

resin) mcterial from which a number of c_pounds were previously evaluated

for hydrazine service and improved to proviHe optimum properties, both for

service and fabrication. These previous materials were designated as

AF-E-71-2 and AF-E-102. AF-E-I02 is presently being used in flight

applications by the Naval Research Laboratory in their Sol-Rad Satellites.

The composition and cure schedule of AF-E-411 is shown in Table

4.1-2.

Table 4.1-2. Composition & Cure Schedule of AF-E-411

Component Parts by Weight

Nordel 1635, duPont 100.0

Cd_-O-_il M-5, Cabot Corp. 25.0

B-3000 Re_in, Dynachem Corp._ 25.0
I

Teflon Powder T-SA, duPont ( 5.0
!

Zinc Oxide, Baker Reagent ' 5.0

Calcium Oxide, Baker Reagent 5.0

Vinyl Silane A-If2, Union Carbide 1.0

Di-Cup R, Hercules 2.0

Total Parts - 168.0

Cure - 30 Min/35O°F

Postcure - 2 hours/225°F

VariaCions of this compound were tested to determine possible

improvementsin low or high temperature properties. These variations

are the results as shown in T_ble 4.1-3. r_is table shows the base

propertiesof e_ch material; the effect of exposure to 300°F for lO0

hours; and the effect of exposure to hydrazine for 24 hours at 120°F

and 72 hours at 160°F, including pressure rise (aP) in a closed container

(indicatingtendency to decompose hydrazine).

4-6
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To improw prooerties at the design goal temperature of +300°F

an antioxidant :, ; added. Aoe Ri_p p_¢i,, n _ wiA_1,. ^_. _ .......... _,j US_u foi- p_r-

oxide-cured elastomer stabilization and was considered to be non-

reactive toward hydrazine. Using mechanical property retention after

., 300°F air aging as the initial criteria, it was found that this parti-

: " cular antioxidant provided an improvement in AF-E-411's thermal

stability.

It wa- concluded From these tests that the addition of mineral

; oil (Kayd,,l)did not improve the low Lemperatureproperties through

plasticization. Addition of antioxidant was considered beneficial as

--. noted above and retained in the program as a compound designated

AF-E-41IA.

AF-E-411 has been provided as seal materials for various flight

programs including NASA/GSFCAtmosphere Explorer, and Synchronous

Meterological Satellite programs.

" Table 4.1-3. Variations and Properties of AF-E-411

.... i

_'" (LOr,_'_ t _C I_ _.:'--k--4]l) (+I0 phr kaydolOll) (+20phr Kaydol0_.I) ,'* o 7hr Antloxld,'nt) ('_.0phr Af_II, '_

";; _I0_, 1650 1650 940 ,xuO 1325

1B 2200 2600 2100 _3lFJ 2500b

_._ EF.., 150 170 190 130 220
,_ Set 3 3 4 3 6

_. S_oreA Bg 89 86 go 8g

_ Tear 170 280 205 320 28(] ,

.*,'r Aged

"" ...... ]B50 1425
._r M]O0t,

;z" TB 800 _200 725 2000 2300

"," EB 50 50 50 110 180

_, 0 0 0 3 6
Set

ShoreA 93 93 93 g] 90

_ Tear 130 115 105 230 2P5

h21i4
2-'-./i 20°F +
72h/160_F _

_' 2100 1250 1250 2100 |_C_
'i O0

_. _ 24O0 22SC, 1g50 2600 2)O0
B

: '_B 140 }90 190 140 1(_0
" St.t 3 6 6 5 5

i ShoreA go 89
88 gl 90

• _ C" /J),psi 21.4 20,0 ?0.(; 20.5 ?0.5
• _ (,o,itro)_ lq _)

4-7
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: 4.1.3 AF-E-41IA

This compound is one variation of AF-E-411 which indicated potential

improvement through the use of additives. Using 3 parts of Age-Rite

Resin D, it was determired that after 300°F exposure, improved properties

/ (as compared to AF-E-411) resulted. In all other respects the formulation

of AF-E-41IA is identical to AF-E-411.

The composition of AF-E-411A is shown in T_ble 4.1-4.

Table 4.1-4. Formulation of AF-E-411A

! Component Parts by Weight

I
! Extracted Norde! I040 EPT lO0.O

Cab-O-Sil M-5 25.0

f HYSTL B-3000 Resin 25.0

I T-gA TFE Powder 5.0
I
i Zinc Oxide 5.0 _,

• I Calcium Oxide 5.0
i
Vinyl Silane A-172 !.0

Di-Cup R 2.0

Age-Rite Resin D 3.0

Total Parts 171.0

4.2 Properties and Characteristics of Tested Materials

The test data presentcd here are only for those seal materials

tested during this program, namely AF-E-124D, AF-E-411 and AF-E-411A.

These data include screening and characterizationtest information.

Some information is provided, for completeness,from other programs or

sources and is identified as such.

4.2.1 AF-E-124D

It is desirable for many reasons to use the same seal material for

both fuel and oxidizer. The only material identified through the ")-

4-8
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Z:. earlier phases of this program with this capability besides Teflon is
'.'" AF-E-124D.

'_ Mechanical properties of AF-E-124D in air are shown in Table 4.2-I

. and cover the anticipated Space Shuttle temperature requirements. The

_/ mechanical properties are good for ambient and low temperatures, with

the expected increase in tensile strength and reduction in elongation
• _.
• _ at -I00°F. At 300°F the material properties are appreciably reduced

_ indicating limited application at this temperature, for any period of

_' time.

- _ Air aging at +300°F and returning to room temperature prodtces no
}%

effect upon AF-E-124D because _t is post-cured in an air oven f)r 24

_ hours at 550°F. The data in Table 4.2-3 indicate that even after +400°F

exposure the material is not degraded (within experimental error).

Immersion of AF-E-124D in 50/50 N2H4-UDMH for three months at room

. " temperature also had no effect upon mechanical properties (Table 4.2-4).

Table 4.2-3 reports the effect of nitrogen tetroxide on AF-E-124D

after 7 days, three months, 6 months and 9 months at room temperature;

• _ and after 100 hours at +160°F, and 7 days at 200°F. The property change
?

_ due to ambient room temperature _xposure (+65°F to +80°F) indicates
t)

..: relatively little propertv change, the 6 month change in tensile strength

being a reduction of 18%, and at 9 months an apparent reduction of only

10%. Since there is no mechanism whereby an increase in strength shouldoccur with propellant exposure, this must be attributed to test vari-

ability. It can be concluded however that the tensile strength must• be approximately equal to the 6 month value. As the temperature is

increased, a more pronounced change is seen with 100 hours at 160°F _

causing a tensile strength reduction of 24% and 7 days at 200°F a

_eduction of 49%. This table also indicates the effect of 50/50 on

AF-E-124D propertie_ at room temperature. A larger change at room

temperature is seen, a maximum of 21% reduction in tensile strength at

6 months: At elevated temperature a reduction of 30% in tensile strength

occurs after 7 days at 200°F.

0
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• In Table 4.2-4 the dimensional and weight change in AF-E-124D due
_L

'_ to exposureto N_O_or 50/50are shown. Considerable_w_l"is =Yno_enced

in N204while verylittleincreaseis noted in 50/50. Aftera 7 day out-
gassingperiod,the AF-E-124Dreturnsto essentiallyits initialcondition.

In Table 4.2-5the tendencyfor AF-E-124Dto decomposehydrazineis

/ indicated. No significantdecompositionoccursat roomtemperature.At

+200°Fa pressureriseof If.2psi above the 50/50controlwas noted,

which is significant.At 200°F the pressurein the controlpropellant

(50/50)reached28.5 psi. The 50/50pressureis approximatelythe vapor

. pressureof 50/50at 200°F,and the resultingtest pressureswere con-

sideredthe safe limitof the glass testapparatusused. Although

similartestswere run with N204at 200°F,no usefulinformationcould

be obtainedsincethe pressurerise is stronglya functionof NO2 con-

centrationand many conditionscan affectthe N204_---NO2 equilibrium.
The mechanicalpropertiesdata from thesespecimensare shownin Table

4.2-3.

This would indicatethe prolongedexposureat +200°Fto hydrazine

base propellantwill resultin some propellantdecompositionwhen in%

contactwith the sealmaterial. If the exposedarea is small,as in a

vaiveseat or staticseal, thisshouldhaveessentiallyno systemeffect.

The effectsof variousconBoncleaningsolventsare summarizedin

Table 4.2-6. As indicatedin thistable littlepermanenteffecti_

exhibitedas the resultof 14 day exposureto isopropylalcohol,dis-

tilledwater,or trichlorethylene.FreonTF resultsin appreciable

mechanicalpropertyand dimensionalchanges. This is a typicaleffect

experiencedwithmany elastomericmaterials. It is recommendedthat

FreonTF not be usedwithAF-E-124D.

Figure4.2-I showsthe compressionvs deflectioncharacteristicsof

AF-E-124Dat +70°Fand +300°Fand two loadingrates. The resulting

curvesindicatethat the parameteris relativelyindependentof load

:-ate.55% was selectedas an arbitrarymaximumvalue. The specimens

did not failat this compression.A typicalseal deflectionof 25%

would requireabout500 psi 1 "d,while at +30n°Fthe loadis onlyabout

200 psi. Figure4.2-2showsthat at -IO0°Ffor the samedeflection

4-10
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_'-:.: _ approximatp!y 6000 psi is required Repeated loadings at ambient room_c _c

-,- tempe_u _ to _n_ r_o,_ and defiecgion (Figure 4 2-3) shows that the

)_, material is very resistant to hysteresis losses under these conditions.

i.;,. The difference in load at 25% deflection between cycle 1 and cycle 100

_' is very small

_* Compression set characteristics in air of various configurations

" _i are shown in Table 4.2-7. This table is a compilation of a number of

tests categorized by temperature.

From this table, it is obvious that configuration is very important

in the degree of compression set which occurs. In general, a large mass
such as a l" dia x I/2" high button experiences less set than an O-ring.

The other, and most important factor, is time. In an unconstrained

specimen such as these, an increase in set occurs as a function of time.
_ In a constrained specimen such as an O-ring in a properly designed gland,

or a stopped valve, the load would decrease as set occured and the

permanent set would level out after a short period of time.

_. .. In this report, compression set is reported by two calculation

" :_ methods. Each method is useful for specific purposes. '#.
_. Method A is used in determining degree of compression for static

seals and is considered to be of most value in establishing sealing

capability. Method B is a more standard ASTI,Im__hod which is usually

referenced in the literature, and results in a higher indicated value.

The methods of calculation are:

Method A ti - tf

% Compression Set - ti X I00

Method B

ti - tf

% CompressionSet : ti _ tc X I00 ..

Where: ti = initial thickness

tf : final thickness

tc compressed initial thickness

0

i
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Compression set of AF-E-124D after various exposures to hydrazine

base fuels and N_O, is shown in Tab!p...._ p.R_. At ,,,_=-^_-_^,o_=temperaLuresc_

the compression set is low (approximately 15%) even for long term as

identified by the 9 month data. As temperature is increased for an

extended period the compression set increases, which is related to the

> reduced tensile properties identified in Table 4.2-I as temperature

increases. Short elevated temperature exposure times would not appear to

be detrimental to the sealing capability. Figure 4.2-4 shows an AF-E-124D

O-ring after being exposed to N204 at room temperature in a compression
test fixture for a two month period. No degradation is apparent an_

the original flash on the I.D. remains, indicating no attack even in

thin sections. (The O-rings were not deflashed prior to testing.)

Also in Figure 4.2-4 are shown two O-rings which were exposed to N204
at 200°F for 22 hours, while compressed at 30%. Some deformatioa occurred

but no marked physical deterioration was noted. In specimen 2 the

• O-ring was mechanically separated. The cause of this failure is con-

sidered to be the type of test fixture used. The O-ring is compressed

without annular support such as would be provided in an O-ring groove. ,

• At elevated temperature the tensile and tear strength is reduced (See

Table 4.2-I) and the O-ring is sheared more readily. W_thout groove

support, the shearing action continues until physical separation occurs.

The 200°F/22 hour point appears to be the maximum time-temperature

combination where a slight difference in loading or characteristicsare

amplified. The two O-rings were tested simultaneously under theoretically

identical conditions.

Also in Figure 4.2-4 is shown an AF-E-124D O-ring after 200°F/22 hour

exposure to 50/50 while at 30% compression. As shown here and indicated by

the data, property retention was good. Figure 4.2-5 indicates the degree

of resilience remaining after compression and the recovery rate after

release. As a typical elastomer the maximum recovery occurs rapidly

' (within one hour). The N204 curve in Figure 4.2.5 shows an upward trend
as a function of time after release. This apparent increase in compression

set is due to the loss of volume swell experienced during exposure to N204.

This results in a lower thickness specimen as the N204 evaporates. While -_
no data were obtained between I hour and 24 hours, the curve is expected to

4-12
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. _; approach a maximum value rapidly and then remain essentially constant.
-_ _-

_. This _well and rn_*_=_+_ _k- -^_ .-=...... ........... on _,,_ro_e,,s_ic indicates that a desirable

F "_:}, condition would be to have AF-E-124D exposed to propellant continuously

._;' once initial exposure has occurred.

•_S Table 4.2-9 presents some thermal characteristics of this material.

: _ The TR-IO temperature (retraction temperature) is the temperature at

"_ _ which a stretched frozen elastomer specimen regains its "rubbery"

_ _ character in the absence of imposed work. This test is done by stretch-

ing a specimen to a predetermined length, and freezing it at that elon-

-' gation. The specimen is gradually warmed and the temperaturewhere
%

_._ contraction reaches I0% is defined as the TR-IO temperature (ASTM D1329-60).

"_ The significance of the TR-IO temperature,or the glass traasition temper-

_ ature (that temperature where a material undergoes a transition to becomehard and rigid), as relates to sealing capability is not established.

_! The_retically, the material is brittle below this point, but as indicated
_n

" _'_/ in the -IO0°F compression deflection curves, it is resilient and earlier

_! testing (Refs. 89 and 90) have shown effectlve sealing capability for _

AF-E-124D in liquid nitrogen (-320°F) and liquid hydrogen (-423°F). By

comparison, the TR-IO value for Teflon which is used as an effective low

temperature sealant, is approximately +77°F. The liquid oxygen impact

resistance is also indicated in this table with no detonations in the

standardABMA test series.

The Thermal Gravimetric Analysis (TGA) values are significant in that

they represent the temperature of extensive material degradation through

• weight loss. A I% weight loss of AF-E-124D is experienced at +761°F, and

a 50% weight loss occurs at B68°F. This indicates that at any temperature

below +760°F, loss of material throuah thermal decomposition is minimal. I"

Permeability coefficients for helium, N204 and 50/50 are shown in

Table 4.2-10. Rate of permeation from test data is shown in Figure 4.2.6.

The typical permeation curve has an induction pe'-iodand reaches

equilibrium after a given period of time. It is the linear portion that

determines the constant, P. As indicated in the table, the units of P are:

0
,. 4-13
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!

.- _ (Scc) (cm) Hg) : [_(_to__ttalpermeation)(thickness)l• P = (cm2 (sec) (cm l(areal (time) (pressure) JL" "

: units x I0-I0

Coefficient of Friction and Abrasion

Coefficient of friction (fc) measurements were made using the Dow

-. Corning ALPHA model LFW-I friction and wear tester shown in Figure 4.2.7.

Measurements were made on the three seal materials in air and propellant.

The air measurements were made at ambient temperature,+270°F and -llO°F

using two velocities for dynamic fc data. Measurements in propellant were

made at ambient temperature using only a single velocity. Both air and

propellant measurements were made five times to minimize data anomolies.

The rider blocks were made from 300 series stainless steel as specified

by Dow Corning. The test rings and rider blocks are shown in Figure .

4.2.8. .-

To simulate expected seal surface finishes, the elastome_ finish

was approximately2 RMS an_ the rider approximately 8 RMS.

, The coefficients of friction for varied temperatures in air, are

shown in Figure 4.2.9 as a function of surface speed. Figures 4.2.10 t

and 4.2.11 provide friction coefficient data in N204 and 50/50. The

coefficient of friction of AF-E-124 D is unexpectly low, both static

and dynamic. This material feels somewhat sticky to the touch and

tends to stick to itself but this characteristic does not appear to' I
influence the friction characteristics. '

F'igure4.2.12 shows wear as a function of number of cycles,

compared with Teflon and AF-E-41I.

This test was conducted using an oscillatory reversing motion of

approximately one inch. In this way, the test simulates the reversing

actions of a ball or butterfly valve seal, or the reciprocating action

• il ")
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_: _ of a shaft seal. The tendency for the se_1 surface to be oriented in

• _ .......... w,uu_uly is a worst case con-_: a preferred direction it _limln_*_d and .......
.... dition. As seen from this curve this material is not a high life

materia _ in a direct sliding application. Although the quantitative
.g..

_. weight loss is not easily correlated the relative weight loss as

/ ;__ compared to Teflon or the other elastorners can be used

e Miscellaneous Properties

Other parameters determined during this program include specific

gravity, effect of vacuum exposure and impact strength. These para-

S. meters are summarized in Table 4.2.11. Of particular importance is the
: lack of dimensional or weight change as a result of vacuum exposure.

included in the test samples was a ball valve seal of the configuration

used in the TRW LMDE ball valves to determine any vacuum effects on

complex shapes. A vacuum of 1.5 x 10-6 torr was maintained for 168 hours.
" _ The values rcpGcted are the average test values of a number of specimens

.:d

7_ and although some positive and negative changes were indicated, the values

_ : are considered zero, within test accuracy. ._

_. Also shown in Table 4.2-11 is the mold shrinkage characteristicof

!

AF-E-124D. This value of 12% is very high and creates problems in mold-

ing, particularlywhere high precision i_ desired, However, the major

• problem is in mold design, and generally requires a few iterations to

obtain proper mold design. As an example of the complex shapes which can

be molded is the ball valve seal used in the vacuum effects test. This

AF-E-124D seal is shown in Figure 4.2.13, and shows that excellent results

can be obtained, even with a complex part. ,_

Valve sealing verification tests were conducted with a modified I

commercial valve used as a test fixture, as described in Section 3.4.

This fixture used a flat disc type seal as the seat, with a flat mating

poppet. The sealing diameter was approximately 1 inch diameter with an

0.050" sealing width. This series of tests was conducted to provide

verification of sealing capability and for comparison rather than as

design data. "Zero leakage" as defined for these tests is no gaseous

nitrogen leakage as measured by the water displacement method describedin Section 3.4. Figure 4.2.14 indicates AF-E-124D and AF-E-41I seat

4-15
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stressrequiredto cbtainthresholdsealingas a functionof temperature. _.

_ A. expected,a relaLivelyhighstressis requiredat -50°Fbut remains
no

relativelyconstantup to*150°F. In Figure,4.2.15),the effectof

cyclingon maximumseal stressis shownafterexposureto propellant.

AF-E-124Dindicateslittlechangeup to 200 cycles,whileAF-E-411shows

a slightdecrease. The rangeof stressesare essentiallya constant

•_ valueat theselow ( _ 300 psi)stresslevels. Figure,4.2.16showsthe

effectsof variouspropellantexposureperiodson minimumsealingstress.

In 50/50,bothAF-E-124Dand AF-E-411are essentiallyconstant_ In N204,
AF-E-124Dshowsa slightreduction,probablycausedby swellingwhich

softensthe sealsomewhat.

4-16lwummm!ll_ I i
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T_ble 4.2-I

_ Mechai_icalPropertiesof AF,-E-124D
_ _', _ In Air at VariousTemperatures

[- Test
• Parameter I Temperature Valuet

"_i,_. Tb, psi -]O0°F 3100

/ _:_ Eb, % -lO0°F 25
"T _. Tear, pli -lO0°F 70

_ MIOO, psi + 75"F 925

_! Tb, psi + 75°F 2150

_' Eb, % + 75°F 205
Tear,pli + 75°F 180

ShoreA + 75°F 86

, _. Tb, psi +160°F 900

,, M]o0 +160°F 275

Eb +160°F l_
Tear +160° F 1O0

" "" Mloo'psi I 300°F 200
• _ Tb, % 300°F 250 '

'_T Eb, % 300°F ]10
'_ Tear, pli 300°F ]0

Table 4.2-2

Effectsof Air Aging on AF-E-124DMechanicalProperties

Hours Temperature Media Property Retention,_f )
Aged {°F) Property ,

lO0 +400° Air MIO0 _ I00%

Tb _ I00%

Eb _ 100%

3noreA + 2 Change '

4-17 _)
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: : 1 Table 4,2-4
: /_P-.E-124DWeight and Dimensional Changes

::: Due to PropellantExposure(1)

+:

/ '-:_ Parameter N204 50./50

Time 3 Month 11 Month _ Month II Month

%" I 1

_ .....

" WeightChange(2_ +I0.4% 12.5% 0.6_; 1.3%

WeightAfter 7 Day Dry * 3.0% 5.0% _ 0 1.2%

! LinearDimensionChange(2) + 5.7% 4.0% 1.0% 0.61

LlnearOlmenslonChange + 2.3% 2.0% _ 0 0.6%
', After 7 Day Dry

_- VolumeChange(2) 18.0% 13.0% 3.0% 1.8%

After 7 Day Dry 7.0% 6.2% 0 l._I

_ (I) Exposureat ambientroomtemperature(70-_5°F)

(Z) Immedl;celyupon removalfrompropellant '
i
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Table 4.2-5

Effects of AF-E-124D on 50/50 Propellant

IExposure Exposure PressureILtseAbov_
J Time Tempe-a:ure Fropellant Control(P_c[)

Hours) {°r) a) Surface area of materia'l= 3_2Cl,l2<

" / 72 20G°F 50/50 +1 i.2 (a) ulV°iumelage-of71Pr°pellantM1 =, 25 HI

L Glass container

Table 4.2-E

_F-E-124D Mechanical Properties After Cleaning Fluid Exposure

(14 nays at_unbient Room Temperature and Air Dr2 for 7 Days)

Fiuld

Property Freon TF Trichloethylene Distilled Isopropyl
Water Alcohol.. . ,. , J ..

Mlo O, psi -565 - 6t +!2_ + 5_ I

l"b, psl -70_ -17_ _ O +155

Eb, _ +125 +IO_ +12_ +13_

Swelling, _ +20_ +10_ + 0 + 0

Weight Change, _ +40_ + I_ + O + 0

Shore A 7 + 8 + 6 + 8

)
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Table4.2-7

CompressionSet inAir - AF-E-124D

% CompressionSet
. Temperature Time Configuration % Initial After After

, °F Hours Compression Release 24 Hours

77 24 Button 30 19.2 2.6
77 lO0 Button 23 36.5 ll.8

160 720 O-Rinc 25 65 ....

160 25 Buttol 23 69 58.5

200 24 Button 27 71 61

400 336 O-Ring 25 30.4 ....
_T

400 456 O-Ring 25 52 ....

, 400 456 O-Ring 25 36 ....

' 400 456 Button 25 12 ....

400 22 Laminates 25 18.1 ....

400 22 O-Ring 25 17.9 ....

400 22 Button 25 ]4.1 ....

_" 400 648 O-Ring 25 36 ....

. . • . . ,

% CompressionSet = ti " tf X ]00

,. tI - tc .

_'

tI = InitialThickness ,

tf = FinalThickness(Immediatelyon release)

tc = Thicknessof CompressedSample i

Conftgurations

Button 1" dta. x 1/2" high

Laminates - .060 discs l" dta plted to 1/2" height

O-Rtng - Standard -214 O-Rtng (0.1250 tnch nominal cross section)

l
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Table 4.2-8

: AF-E-124D CompressionSet in Propellants

(O-Rlng Test Specimens)
-

z , z (l)
Temperature Time Initial Propellant CompressionSet

°F Hours Compression A I B/ 9 _=
]

- 75 1440 25 , 50/50 ) 13.5 54.3i !

(2months) , ,

75 1440 25 N204 II.0 38.5
(2 months)j t

" I75 2160 30 50/50 ll.O 38.5

;(3 months)) )

75 6480 30 50/50 16.9 59.1
)(9 months)

75 6480 30 N204 15.3 53.5
". (9 months) '

160 696 30 N204 [ 23.5 82.3 .
i I $

200 22 25 1 N2H4 i! 22 77
I

200 22 25 UDMH I 24 84
II

200 22 25 MMH ! 25 87.5

200 22 30 UDMH 20 70

200 22 30 N204 14.8 52

L

ti - tf

(1)MethodA - % Compression= ti X lO0

Where ti = InitialThickness= .1250 (nominal)

tf = Fin&lThickness- Inmnediatelyuponrelease

ti - tf X lO0
MethodB - % Compr_;slon= tl . tc

Where t; - Thickness of CompressedSample )

4-22
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" _- Table4.2-9_" ThermalPropertiesof AF-E-124D

:_ PAR._METER PROPERTYVALUE

TGA(1) (1)Temperatureat which

_. I% weightloss 761,_F indicatedweightless
!". occurs.

• 50% weightloss 868_F

V TR-IO(2) + 37'_F (2) Temperatureat which
' elastomericproperties•_ Coefficientof Thermal 458
,; reappearsafter being:,. Expansion(Lln_ar)
_. IN/IN/°Fx 10-° (+60°Fto +342°F) frozenat lowertemper-

atures(ASTMD-1329-60)
'_ GlassTransitionTemp.

(3)ABMA Test 72 ft-lbimpact
(approx.) + 37.5OF

LO2/ImpactSensitivity(3) 0/20 loadnumberof reactions/totalnumberof tests.

P

' Table4.2-10

PermeabilityCoefficientsfor AF-E-124D

Helium,70°F UDMH, 70"F N204 70°F NzH4, 70°F
I Al_osphereI Atmosphere l Atmosphere l Atmosphere

i p = (scc) (cm) lo_lO..(cmhg) lO0 x 0 (22 days) 80 x lO"I0 0 (42 days)(cm2)(sec)

Table 4.2-11

Htscellaneous Properties of AF-E-124D

PARAMETER VALUE

Specific Gravtty 2.05g/cc

, VacuumEffects (1) (l) After exposure for
168 hours_

Z Dimension Change +0.7 to -0.9" 1.5 x lO'" torr

% WeightChange +0.4max.* (*Note:Consideredto be 0
wlthintest accuracy)

Mold Shrinkage _ 12%

C
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Figure4.2.2 AF-E-124DCompressionDeflection
Characteristicsat -lO0°F
(ASTMD395 Specimens)
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AF-E-I24D LOAD- CYCLE
" CHARACTERISTICSAT 70°F

1STCYCLE
40 2ND CYCLE

25THCYCLE
50THCYCLE

35
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O 30
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O 25
u CYCLE1
_e

Z 25
o 5

20 _ 20 " ;
CYCLE100
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15 _o_ 10 / LOAD- DEFLECTIONCHARACTERISTICSWITH
DEFkECTIONLIMITED

5 TO30%

10 0
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5

0
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Ftgure 4.2.3 AF-E-124DLoad-Cycle
Characteristics at 70°F

(ASTND395Specimens)
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Figure 4.2.8 Wear Ring and Rider
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VELOCITY- Ir,_. 'SEC

Figure 4.2.9 AF-E-124D Coefficients of Friction in Air
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4.2.2 AF-E-4! 1

AF-E-4ll is intended onlv fnr fupl _ervic_ _nd as such Is _har_=,-

ized for this application. As with AF-E-124D it was selected as the most

suitable material from screening tests and previous test history.

/ Mechanical properties are reported in Table 4.2-12 for AF-E-411 in

air at temperatures over the expected range of Space Shuttle requirements.

At room temperature,AF-E-41I is characterizedas a relatively high modulus

materiaJ because of a high crosslink density. Of the three materials,

AF-E-411 best retains high tensile :trength over the range of test

temperatures.

: Table 4.2-13 shows the effect of 300°F air aging on the mechanical

properties of AF-E-4II. This property is perhaps the weakest of those

tested. After lO0 hours at 300°F, the room temperature stress-strain

properties of AF-E-411 were about one-third the original values. Air, and

more correctly the oxygen in the air, attacks EPDM polymer at elevated

temperature. Polymer chain scission is the primary degradation mechanism.

• After propellan_ exposure at room temperature and up to 160°F,

AF-E-411 shows little sign of degradation, as shown in Table 4.2-14.

Original mechanical properties of the material are shown and in comparison

' sviththe initial values the particular batch used for these tests shows

slight undercure (the reason for this is unknown). After aging in tile

propellants, AF-E-411 provides properties in excell( t agreement with the

initial values. There is experimental error of approximately +I0% due to

mechanical property measurement indicating that the material is not _ig-

nificantly degraded by the propellants at temperatures up to 160°F or as

i a result of long-term immersion in propellant at room temperature.
c

i In applications,when large seal areas have centact with the propel-

lan_ during long storage periods, it is important to know if the seal

i degrades the propellant. In the ca_) of hydrazlne base fuels, the (wo

most accessible forms of degradation are pressure rise (caused by hydra-

zine decomposition products) and an increase in the Dropellant's

38
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_- non-volatile residue (NVR). Table 4.2-15 shows that AF-E-411 does not

:_':. significantly decompose hydrazine. However, the propellant NVRwas

.... increa_pH by InO hour/l _n°__, stor'_ge with the rubber. The NVR material

•i"i had an oily appearance, and was insoluble in dilute hydrochloric acid,

_, suggesting that it was organic. Light oils are present in peroxide-cured

_: EPDMand these possibly were extracted by the propellant. Compatibility

_- data from other research programs and from flight qualification tests

- _ have provided N','Rs lower than the results reported here, suggesting that
_: the particular lot of M!L.-SPEC hydrazine may also influence the NVR value°

"_._. Table 4.2-16 shows the effects of immersing AF-E-411 in represen-

"":: tative cleaning fluids. Isopropyl alcohol is the recommended cleaning

_!i solvent, while distilled water also has no effect. Freon TF and trich-

loroethylene are not recommended since high permanent weight and dimensional
_' changes result. Thi_ is typical of the effect of these solvents on

el as tomers.

>_ Compression vs deflection curves for AF-E-411 are shown in Figures

; 4.2.17 through 4.2.20. Figure 4.2.]7 shows that, over two decades of

_ loading rate, at ambient room temperature, the material has reasonably

!_. constant loading characteristics. For a 25% compression, the material• requires approximately 1400 psi. At +300°F (Figure 4.2.18) the material

i _s also insensitive to the loading rate over two decades. The material
._ can also be compressed to 55% without failing. At this temperature, a

25% compression requires approximately I000 psi. Figure 4.2.19 shows

i the load characteristicsat -100°F. Load rate also has no effect on the
. loading characteristicsat this temperature. As an example of the

increased rigidity at -100°F, a 25% deflection requires approximately

9,500 psi. It is significant that the material can withstand loads of i

this magnitude without failure and display resilience despite being

about 40°F below the glass transition temperature. As mentioned earlier,

the correlation between sealing capability and glass transition tempera-

ture has not been established.

Cryogenic sealinj tests of AF-E-4ll have not been conducted although

a similar material (AF-E-71-2)has successfully sealed at temperaturesas

O low as -423°F (Ref. gO).
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Figure 4.2.20 shows hysteresis data for up to I00 cycles to 20%

i_ deflection at room temperature. As expected, repeated loadings, particu-
>

iarly the second, induces some softening of the rubber. At a nominal 20%

deflection, the second cycle decreases the required load about 4.6%.

After 100 loading cycles the total hysteresis loss is about 8.6% of the

' original load.i

-" Compression set data are reported in Table 4.2-17 for tests conducted

in air at various times, temperatures, and specimen conditions. Calcu-

lation Method B was used, as defi_ed in Section 4.2.1. At temperatures

up to +I60°F, AF-E-411 has outstanding resistance to compression set. As
the temperature increases, the compression set is increased appreciably

as shown by the 300°F/720 hour data. At least two conditions of these

tests are "worst case". First, the samples were 0-rings tested in air+,

AF-E-4]]'s most prominent degradation agent. Second, the test specimens

were not constrained in a seal gland but were free to expand. (This is
"%

the stmdard O-ring compression set test method.) More air can circulate

freely in an unconstrained geometry and the ring can set freely instead r %

of encounteringa restrainingwall suchas wouldbe the case in an

O-ringgroove. All measurementswere takenimmediatelyafter unclamping

(withinone minute).

Table4.2-18reportscompressionset data for AF-E-4llmeasured

after beingcompressedit,propellant.At ambientroom temperaturethe

compressionset values(determinedby MethodA) are very low (e.g.,

after2160hoursat 750Fin 50/50,the compressionset of AF-E-411was

8.2% immediatelyafter release). At 200°F,the compressionset value in

non-swell'_gN2H4 increasedto 17.8%. As the methylgroupconcentration
' of the propellantincreasesfromN2H4 to 50/50to MMH to UDMH, the

. measuredcompressionset decreasesin the orderof 17.8%to 10% to 7%

to O. Thisappearsto be due _o swellingcounteractingthe apparentset

of the r,Jbber.
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• 7- While elastomers by definition are expected to recover from defor-

,: mations very quickly, the data in Figure 4.2.21 show that additional

• recovery occurs in AF-E-411 for up to 24 hours after unclamping, although

_ the majority of recovery occurs within one hour. Figure 4.2.22 illustrates

:; the appearance of an O-ring after elevat_d temperature exposure in 50/50.

/ _ Little permanent set has occurred and no physical degradation as noted by
_' by the "flash" remaining. The flash was not removed to allow evaluation

of the compatibilityof this section.

Some thermal properties of AF-E-411 are reported in Table 4.2-19.

_ The lov_temperature at which a stretched, frozen sample regains its

• _ "rubbery character" in the absence of imposed work is the TR-IO tempera-ture. AF-E-41I is a true elastomer at least as low as -40°F. However,

the compression deflection data in Figure 4.2.19 shows the material will

_ seal at temperatures considerably below -40°F when work is applied.

_ Thermal Gravimetric Analt,sis(TGA) is a sweeping air environment

with a heating rate of 3°C per minute shows AF-E-411 to lose I% weight

_- at 561°F and that the material does not lose 50% weight until 865°F.

_ _ Physical loss of this material, then, should not occur below approximately

560°F, although property degradation does occur.

In Table 4.2-20 the permeability constants of AF-E-411 with respect

to helium, UDMH and hydrazine are shown. Permeability rates are shown

in Figure 4.2.23.

Coefficient Of Friction and Abrasion

The same techniques as used for AF-E-124D were used in obtaining

coefficient of friction and wear data (see Section 4.2.1). The coefficient
(

of friction data are shown in Figures 4.2.24 and 4.2.25 for 50/50, air, j
\

and varied temperatures as a function of surface speed.

Figure 4.2.26 gives wear as a function of the number of cycles at

various loads. Although less wear occurs than with AF-E-124D at equiva-

lent loads, wear occurs at a much higher rate than with Teflon.

B
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'" MiscellaneousProperties

e, Otherparametersdeterminedduringthisprogramincludespecific ,

'; ' gravity,and effectof vacuumexposure. These parametersare summarized -:

:, in Table4.2-21. The vacuumexposureresultsare essentiallythe sameas

for AF-E-124D. No appreciablechangein weightor dimensionswas noted

,, _ as a resultof this vacuumexposure. The vacuumlevelwas ].5 x 10-6

_ to;_rfor a periodof 168 hours.
/

-" = Figure4.2.27showsthe effecton seatstressof varyingpoppet

surfacefinishes. The essentiallyconstantstressis typicalof an

elastomericseal. Withinthe rangeof measurementaccuracyand test

repeatabilitythesedata are essentiallya constantvalue. Thesedata

are howeverprimarilyfor informationand comparisonratherthan design

data. These testswere run (as describedin Section3.4)with a test

fixturevalveusinga flatseal of approximatelyl inchdiameter.

These testsas well as the onesdescribedin the AF-E-124Dsectionwere

intendedas demonstrationand verificationtestsfor the variousmaterials,

Zero leakageas definedfor thesetestswas interpretedas no gaseous

nitrogenleakagewhenmeasuredby the water displacementmethoddescribed
in Section3.4. Figure4.2.28showsthe effectof exposurein 50/50on

requiredseatstress. Althoughthe pointsvary, the stressappears

relativelyconstantas a functionof exposuretime up to 24 hours.

Figure4.2.29showsthe seat stressrequiredfor sealingAF-E-411pre-

conditionedin 50/50as a functionof numberof cycles. Up to the test

maximumof 200 cyclesonlya smallchangewas noted. Figure4.2.30shows

the variationin requiredseatstressto sealat temperaturesfrom

-50 to +150°F. All valuesare thresholdsealingstressesas obtained

with the testconfigurationdescribed.



Table 4.2-12

MechanicalPropertiesof AF-E-411in Air at VariousTemperatures

Temperature

Parameter -IO0°F +75°F +I60°F +300°F'

Tb, psi 7000 2300 1650 llO0

MIOO, psi -- 1350 -- 860
I

Eb, $ 45 170 280 125

Tear,pli 1125 250 90 45

ShoreA -- 89 ....

f

Table 4.2-13

Effectof Air Agingon MechanicalPropertiesof AF-E-411

; (Testedat RoomAmbientTemperature

, Temperature Value
HoursAged °F Property (% Retention)

* l

'! 100 +300°F Tb, psi 36%
! Eb, % 33%

Shore A +4

Fear,pli 77%

I
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;| Table4.2-15. Effectof AF-E-411on Prope!iants

"I ' Exposure F Exposure ) r Pressu_'eRise ! r
Time, T_perature ' Propellant ) (above control) NVR I

;"l Hours oF i (psi

i , 1){ lO0 160 + N2H4 i 2.0 27.8

-i

i_ Surface_re"material_32cm2 i
Volu_ of Propellant = 25 ml

c',, Ullage = 71 ml
;_ Glass Container

"_ Table 4.2-16

MechanicalPropertiesof AF-E-4llAfter CleaningSolventExposure
_: (14Daysat AmbientTemperatureand Air Dry for 7 Days - % Change

_ ) _lui_ l_t) Property Freon TF Irlchlorethy:ene ' Distilled Water _Isoprow1 Alcohol)

Tb, psi _ +I0% +13% +18% + 9% 1

MloO, psi +18% + 18% +15% +21% ii

_r_ Eb' % i - 7% 7% -15% - 7%

_. Swe", % , +ll% + 24% 0 + I% ' -

'_ Weight Change, % +70% +158% 0 + 6%

Shore A _ + 1 + 1 + 3 + 1

Table4.2-17. CompressionSet in Alr oF AF-E-411 /

:: T_rature Ti_ Specimen % Inltl,il % C_presslon
'_ °F (Hours) Configuration C_pression Set :

. 75°F 168 O-Rings 25 9.5

'_,._ 75"F 720 O-Rings 25 22.5

i 160_ 96 O-Rings 25 14.0 m
160° 1024 O-Rtngs 25 31.5

2_ ° 22 Buttons 25 17.0

_0 ° 720 O-Rings 25 86.0

ti - tc
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_: Table 4.2-18

, AF-F-4!! CompressionSet in Propellants

(O-Ring Test Specimens)

Immediately UponRelease

/
II ....

-, Temperature Ttme ,Configuration % Inittal Propellant % Compression
• OF Compression Set

B

,. 75° 2 months O-Rtngs 25 50/50 9.5 33.3

75° 5 months O-Rlngs 30 50/50 10.0 34.5

75° 3 months O-RJngs 30 50/50 8_Z 28.6

75° 9 months O-Rings 27 50/50 i 9.8 34.5
I

Z00° 2Z hours O-Rlngs 25 N2H4 117.8 63.0

200° 2Z hours O-Rings 25 UDIqH 0 0

200° 22 hours O-Rtngs 25 _ ' 6.0 Z2.0

200° 22 hours O-Rtngs 30 NzH4 17.8 64.0

200° 22 hours I O-Rtngs 30 50/50 10.0 35.2
|
I

200° 22 hours O-Rlngs 30 UDIel 2.0 7.0
[

i t t - tf ,
MethodA: %CompressionSet • x 100

' t t - tf

Method B: I CompressionSet = _1:t tc x 100 :

]

! Where: t t = tnlttal thtck:_ss (0.1250" retrial)

t= = ftM1 thickness

tc • thickness of c_ms_d s_le
Ul| I

" |
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I Table ,+.2-19

ThermalPropertiesof A_-E-411

r

Parameter PropertyValue
l

TGA (I) (1)Temperatureat which

I% WeightL_,s 561°F indicatedweightlosboccurs.
50% WeightLoss 865°F

TR-IO (2) -40°F (2)Temperatureat which

i elastomericproperties

Coefficlentof Linear reappearafterbeing
ThermalExpans|on frozenat lowertempera-i

I

(IN/IN°Fx I0-6) ture (AST).D-1329-60) L
_+ -IO0°Fto -30°F 44.3 l

- 30°F to +90°F _.5
i, �gO°Fto 270°F 68.6

, J
++

&
Table 4.2-20

+ t+ "+ Helium, 70°F UDMH,70°F P_2H4, 70°F
F I Atmosphere 1 Atmosphere 1 Atmosphere

(scc)(m) io-IO 1o io-16p- 25.8x 1.7 x lO- 1.5 x ,
(cm2) (sec) (an Hg)

I

Table 4.2-21
e,

MiscellaneousProperti_ of AF-E-4II

Property Value f

Specific Gravity g/cc 1.03

VacuumEffects
, ;68 hoursat 1.5 x 10"6 tcrr

{+_ | _Ight Change +1.4% max* *Indicates no change '

% DtwnstGn Change +0.3% max.* within test accuracy ,
, | , , , I
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4 2.3 ^r r _,,^

This material is essentially AF-E-4ll with an antioxidant (Age-Rite

Resin D) added to increase elevated temperature thermal stability without

sacrificing propellant compatibility.

Mechanical properties of AF-E-411A are reported in Table 4.2-22 over

the range of t_mperatures investigated• Addition of the antioxidant

slightly improves ambient room temperature properties, but decreases

properties while at -IO0_F and +300°F.

, Table 4.Z-Z3 repor._ air aging data which show the expected advant-

; age for AF-E-a:IA over .-E-411 Even after 24 hours exposure to 400°F

air, the modi_ ; material retains elastomeric characteristics. At 300°F,

, AF-E-411 material is seriously degraded after lO0 hours, whi!e AF-E-411_

; retains most #roperties. The major advantage of the antioxidant is the

retentio" of room temperature properties after exposure tb elevated

temperatures.

After exposure to fuels, AF-E-411A (Table 4.2-24) is somewhat

inferior to _he AF-E-411 base material in terms of retained mechan:cal "

properties. A_-E-411A apparently has a lower crosslink density and

exhibits greater swell in propellant. Swelling dilutes _he me£h_nir_l

properties and apparent property degradation is probably the result of

swelling in propellant.

Table 4.2-25 _hows that the addition of antioxidant to AF-E-411 does t

i not have a negative effect upon hydrazine compatibility. The lower NVR
!

may result from less low molecular weight oils being generated in the

r presence of antioxidant during the peroxide cure reaction. The same

cleaning solvent effects occurred as with AF-E-411 as shown in Table

, 4.2-26. Isopropyl alcoho! is the recomended cleaning fluid.

Compression vs deflection curves at room temperature are shown in

t Figure 4.2.31 at various loading rates. Over two decades of loading rate

the curves are within about +10% of each o_her. The stress to obtain a

given deflection is about the same as AF-E-411; to obtain 25% deflection,

• approximately 1100 psi is required. .__
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• At +300°F (Figure 4.2.32), AF-E-41IA has about the same_stiffness as
,j

,,._ at room temperature. This is probably because the polymer chains are

_ more active and are on the average stretched somewhat tighter than at

-_ +75°F. At -lO0°F the material exhibits approximately the same properties1

_. as AF-E-41] with a load of 8,000 psi required for 25% def'lection. At

this temperature,35% deflection was obtained without failure of material.
C

" _ Figure 4.2.33 shows that up to 100 loading cycles AF-E-411A suffers

_ some stress softening, but not a significant reduction.

_." Compression set in alr for AF-E-4llA (TabJe 4.2-27) is slightly

poorer than AF-E-431. Both elevated temperature and room ambient tempera-

ture set is equal to or greater than AF-E-411. Apparently, where the

surface area exposed to air is low, as in a confined or clamped configu-

ration, the antioxidant offers no advantage and may actually increase set

because of a lower inherent cross]ink density.

Compression set in propellant (Table 4.2-28) also shows no advantage

_ for adding the antioxidant to AF-E-4ll. Likewise, in recovery from

deflection, as depicted ir_Figure 4.2.34 there is no advantage in adding

_ antioxidant.

"_ Retraction temperature (TR-IO) is poorer for AF-E-411A than for the .

base stock. This may be due to the fact that less low molecular weight

polj_er fragments are generated during the peroxide cure and these oils
are thereby less a factor in plasticizing the material. As shown in

Table 4.2-29 the temperature at which I% of the material is Io_, to

sweeping air with a 3°C per minute heating rate, is improved oy the

antioxidant (from 561° to 64g°F) indicating an increase in temperature

capability before physical decompositionoccurs.

Permeabilityof AF-E-411A to helium gas is shown in Table 4.2-30.

The helium permeability coefficient was calculated from the data shown

in Figure 4.2.35. This permeability value for helium of 19.3 x lO-lO

is slightly lower,than AF-E-411 (26.8 x 10-lO) and approximately 5 times

lower than AF-E-124D. The permeability range would be expected to be

similar to AF-E-411.
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: Miscellaneouspropertiesare Indicatedin Tabie 4.2-3i. As

., . indicatedfor AF-E-41Ino changeoccurredas a resultof exposureto

vacuumfor 168 hoursat 1.5 x 10-6 torr. Also shown in this cable is

the swellcharacteristicin 50/50_,ropellant.A smallamountof swelling

occursafterexposurebut the materialreturnsto the initialdimension

J aftera dryingperiod.

Coefficientof Frictionand Abrasion

The sametechniquesas used forAF-E-124Dwere used in obtaining

coefficientsof frictionand weardata (seeSection4.2.1). The coef-

ficentof frictiondataare shownin Figures4.2.36and 4.2.37for 50/50,

alr, and variedtemperaturesas a functionof surfacespeed.

Figure4.2.38giveswear as a functionof cyclesat variousloads,

temperatures,and in comparisonwithTeflon,AF- E-124Dand AF-E-411.

The AF-E-41iAmaterialexhibitsa much higherwear ratethan the base

AF-E-411material. Thesedata indicatethat it shouldnot be used in

an applicationwhere slidingcontactoccursto a highdegree.

" Table 4.2-22 MechanlcalPropertiesof AF- E-411A

Parameter Test Temperature AF-E-411A AF-E-41l
,- , • ,,,

r

i Tb, psi -IO0°F 4000 7000
Eb, % 50 45
Tear, pll 775 1125

Hi0O, psi + 75°F 13_ 1350

Tb, ?=i I 2500 2300

Eb, % 220 170
Tear,plt 225 250

Shore A 8g 89
i J - • m ....

• MlOO, psi +300°F 600 860

Tb, psi 825 1100

Eb, % 175 125
Tear,plt 85 45

=
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:" Tab1e 4.2-Z3

Effects of Air Aging on Nechan|cal Property Retention

Hours Temperature Medla Prope.-ty AF-E-411A )
" • Aged (°F) % Retained )

!

" _ 100 +300" Air NiO0 107%

_" Tb g2%

Eb 82%

_. Shore A +1

.!/ 24 +340° Air MiO0 135% ;
• I
• Tb 98% I

: Eb 77%

Shore A +2

:- 24 +360° Air MIO0 154%

,_.. Tb 105%

!, Eb 63%

i ShoreA +I

_, 24 +380° Air MlO0 ---

Tb 82% ,

" i_ Eb 51%

Shore A +2 _,
I

24 +400° AI r Mlo0 ---

Tb 57%

Eb 34%

Shore A +3
, . I " "

C
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ii __ Table 4.2-25
Effectof AF-E-411Aon Propellants

....

=! Time of Maximum
Immersion, Temperature Propellant Parameter Pressure

Hours °F Rise

(a)

100 160 N2H4 Pressure l.l
;_ NVR (b) 17.7

72 200 50/50 Pressure(a) -6.3 t

(a) 32 cm2 surfaceareaof material;25 ml MIL-SPECpropellant;
71 ml ullage;a11-glasscontainers. PressurereportedIn psi
above the controlreading.

(b) Non-volatileresiduein unitsof rag/25ml. Controlwas g.8
mglZ5m].

z

I
f

O
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F.

lr_ AF'E'411A Mechanical Properties After Cleaning Fluid Exposure
' (14 Days at Ambient RoomTemperature and Air Dry for 7 Days)

CleaningFluid Property %Changefrom
, _ InitiaiValue

'_ FreonTF + 25%
/ I MI0O, psl
. Tb, psl - 45

-" Eb' % - g%
Swelling,% + 9%

WeightChange, % + 84%

ShoreA + l
J

. Trlchlorethylene MI00,psi + 21%

;. T_, psl + 8%

Eb, % - 18%
Swelling,% + 22%

WeightChange,% +194g

ShoreA - 2
• i ,,R ., ,

DistilledWater MI00, psi + 23% _ ._'

, Tb, psi - 4%

Eb, % - 7%
Swelling, % + 0

Weight Change, % + 0
Shore A + l

. i , , • ,

Isopropyl Alcohol MIOO, psi + 21%

Tb, psi - 4%

Eb, % - 13%
: Swelling, % +_ 0

Weight Change, % + 2%

Shore A + 1
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;;J Table 4.2-27

_ AF E-411 Compression Set in Air

*"_ (VariousTemperatures and Times)

_ (ImmediatelyUpon Release)

I -
T

.. Temperature Time Configuration % Initial 'Compression
(Hours) Compression Set

75° 168 O-Rings 25 23.4

_ 75° 720 O-Rings 25 24.0

257° 336 Buttons 25 37.5

300° 72 Buttons 25 14.7

' 300° 720 O-Rings 25 lO0.O

t i _ tf
% Compression Set = X lO0

ti - tc
.........................................................

*4

0
4-69 i_

I

1974005081-105



4-70

P m mi m

1974005081-106



Table 4.2-29

ThermalPropertiesof AF-E-411A

Parameter Propert_ Comments

r Value

TGA(1) (I)
Temperatureat which

I% WeightLoss 64g°F indicatedweight loss
836°F occurs.

i, 50% WeightLoss

TR.IO(2) _22OF (2) Temperatureat which
elastomericproperties

t reappearafter beingfrozenat lower temp.

.. Coefficientof Linear

Thermal Expansion

(in/inx I0"E)

-IO0°Fto -30_F 42.2

- 30°Fto +90% 80.5
+ gO°F to +325VF 6g.l

I

C'
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l_ Table 4.2-30

Penneabtlit), Coefficient of AF-E-41IA

i

Conditions P*
/

-' Helium, 70°F, 1 Atmosohere 19.3 x ]0"iG

.p. (scc)(cm)
(on2) (sec)(onHg)

Table 4.2-31

Htscellaneous Properties of AF-E-411A

Property Value

• Specific Gravity, (grams/cc) 1.03 "

VacuumEffects - 166 Hours

: at 1.5 x 10-6 tort
(a)

i I WeightChange +0.SZmax.
' % Dimension Change +_).4%max. (a)

Swell in 50/50 inches (11near)

(b)
&

• (_) 2.5_
) (2) _ 0

) (a) Approximately zero within test accuracy
*I

(b) 1 - As soon as removedfrom prclx:llant

2 - After 7 day outgasstng period

)
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Figure 4.2.31 AF-E-411ACompresslon-DeflectlonTemperature70°F -

Vatted LoadRates
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Figure 4.2.32 AF-E-411A Compression-Deflection
-100°F and +300°F

Varle_ Load Rates
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LoA0i_s,)
- ; Figure 4.2- 33. AF-E-411A Corr_pression-Deflection

Hysteresis and Repeatability

(at ?O°F)
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Figure 4.2-36. AF-E-411A Coefficients of Friction in Air -
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Figure 4.2.37 AF-E-411A Coefficient of Friction in 50/50

©
4-79

i

1974005081-115



|

.... . II • "&

........ ..=,,=.==.

; j J LOAD AREA: .225 IN2
:' / LOAD W W

90° _, LOAD - - PSIA .225
CYCLE

8o I

70 _ _, -

NOTE: DATA TAKEN USING DOWCORNING
ALPHA MODEL LFW-1WEARTESTER.
ALL SPECIMENRINGS HAD IDENTICAL

J _ DIMENSIONS AND USEDTHESAMERIDERBLOCK.
-. 60 "-AF-E-411 l

W'I"= 22.5 LB I

x

50 AF-E-411A ,.....

" WT = 22.5LB

o

_"- AF-E-124D
WT= 7.5 LB

30--

20 '' t

Ill .5 LB

I0 f i.

_._ WT= 7.5 LB
_ I0

10 20 30 40

Cycles X 10=3

Ftgure 4.2.38 Wear Comparisonof Teflon & AF-E-411, AF-E-411A, & AF-E-124D
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il.
._C, _ 4.3 Properties of Other Seal Materials In Common Use

T.'

"_ Seal materials commonly used in propulsion system sealing appli
•;_-

w cations were identified in the state-of-the art investigation. This

_- investigationsurveyed literature,manufacturers and government sources

_. to identify and document seal application and materials. Tables 4.3-I,

_ 4.3-2, and 4.3-3 are taken from Ref. 86 to indicate typical applicationsand materials used in bipropellant and monopropellant applications. In

_ Table 4.3-3 more advanced or current systems are listed both bipropel-

lant and monopropellant, to indicate current seal usage. These table_

are obviously not intended to summarize all applications, but are con-

sidered representativeof types of seals and materials.

This section is designed to provide informationon those non-

_: metallic seal materia)s most commonly used or most applicable. As seen

from these tables these materials are: Teflon TFE and FE_, Filled Teflon,

._ Kel-F and EPR. In addition, materials used in system functions not

directly in contact with propel]ant are included. These materials are:

.. Kynar, Vespel and Viton. Carboxynitrosorubber (CNR) has been used for

oxidizer seal applications in Apollo and is also included.
This section a|so includes a brief description of the seal materials,

with sufficient properties data to allow the seal designer to conduct a
i

preliminary evaluation of the material. Applicable references are noted

to provide more informationwhere desired.
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4.3.1 Teflon TFE FbP and Filled

_'

_:-- The most commonly used family of seal materials in storable propel-

_.:" lant use today are those made of Teflon or Teflon compounds. Because of

•.• this, more information and discussion is provided on these materials than4"'

• _ others.
Cj-

.,_! 4.3.1.I TeflonTFE
Polytetrafluoroethylene(TFEor PTFE) is calledTeflonin this

_' .. report as a matter of convenience Actually, "Teflon" is the registered

_ trademark of the E. I. du Pone de Nemours and Co. (Inc.) and legally

'_: should be used only to specify their resin materials or the solids male

from thoseresins. TFE is alsomarketedby severallargechemical
suppliersundertheirown zrademarks.

:, The chemical formula of TFE is: (CF2CF2)n. Its monomer can be
shown diagrammaticallyas:

F F
; I i

_ c =cI I

Thousands of these monomers join togethe_ to form long chains of poly-

tetrafluoroethylene:

F F F F F F F F F
I I I I I I I I I

--C--C--C _C--C-- C---C---C--C--
I I I I I I I I '
F F F F F F F F F

(Someof the informationin this sectionis also fromReference49.)
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Thick pieces of TFE are opaque and milk white in color. Thin

:_ pieces are translucent, and very thin films are almost transparent. Any
--: , _:'

coloring, other than the milk white, is due to foreign materials such asf

t':

_ residual wetting agent, fillers, etc., which may have been added during

processing, or to fluids which have permeated into the structure after

/ processing. High purity TFE is now available from specialty houses who

- process the resins with great care to exclude trace impurities.

TFE is supplied by the manufacturer in the form of molding powder

or aqueous dispersion. Processors form these raw materials into solid

pieces by pressure molding (the powder} or dip coating (with the disper-

sion). The parts so formed can be strengthened by sintering to coalesce

the particles. Postforming, by the application of pressure at tempera-

tures approaching but below the transition temperature (620°F), can be

used to slightly alter the shape of the sintered parts but radical reshaping

_s difficult. This difficulty stems from the fact tha*_, above the transition

temperature, TFE resins enter into a gel state (at 620°F) which limits

the melt flow. Because of its tmresp_nsiveness to heat forming methods,

TFE is not considered to be a true thermoplastic. Seals generally are _

• either molded from the powder or machined from stock.

The mos _.useful property of TFE, for the design engineer, is its

inertness. It is the most inert polymer known. Only molten alkali metals,
1

fluorine, and certain halogenated compou._ds will react with it. Despite

its inertness TFE will be physically affected by some substances, includ-

ing nitrogen tetroxide, which permeate into it and cause swelling; removal

of the permeant will restore TFE to its original condition.

Another valuable property is the very low coefficient of friction of

TFE. Because of this the surface has a slippery feeling even when chem-

ically clean. Its lubricity is so outstanding that solid pieces of TFE or

TFE-base materials are used as journal bearings, piston rings, etc.,

without additional lubricants. T.r'E also is applied by dip coating or

spraying from an aerosol bomb to form thin, solid lubricating films on

solid substrates.

Related to its low-friction characteristics is the d['fi:ult,- in attain-

_ ing a really secure bond between TFE and other materials using conven- )
tional techniques. Special procesees are a necessary pre-requisite to

i 4-86
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producing high quality structural joints. A moderate degree of success

_ has bee__ achieved in heat 5ending TFF to thin metal foils but such bonds

5 ;" usually fail when, for example, the TFE is saturated with nitrogen

•:" tetroxide.

:_.

" Anothe: characteristic of value is TF'IE's very high impact strength

'_' which resists fracture as when a poppet valve closes very "apidlv.?

" The bulk properties of TFE can also be related to the spatial orien-
'd ',

2" tation of the polymer chains. In many regions the chains are in random
},

orientation relative to each other; this portion of the film is said to be

in the amorphous state. In the remaining regions, chains are arranged,I
:¢

in a more or less orderly fashion which is described as the crystalline

_} state; it is believed that the chains tend to orient thernselves parallel to

each other in the regions of crystallinity to form clusters much like
.

bundles of rods. These two states arc co-exic_,;nt inall T_.'E material.

Crystalline regions and amorphous regions are interspersed so the

bulk properties reflect an average respon-e of both states. For example,

the more ordered portions of the chains are less free to be reoriented by

external forces than the ran_o,n parts so they contribute a degree of

;. rigidity _o the entire mass, and it follows that the rigidity becomes

greater as the Froportion of crystallinity to amorphous content increases.
,<

Other properties are also affected by this same proportion. To nm-ner-

ically express this proportion, the percentage of the total mass which is '

i in the crystalline state is termed the crystalliniLy of the TFE, e.g., if
,, 53 percent by weight of the total is crystalline, then the crgstallinity is
5

53 percent.

_" N_t all of the volta'he apparently occupied by the TFE is packed with _.t
polymer chains. Vacant spaces occur because TFE is not a completely l

uniform crystalline substance The degree to which all of the space is

occupied in a finished piece of TFP, depends upon a number of factors

including the size) shape and porosity of the particles in the resin and

the processing the resin undergoes as it is formed into the solid film.

By measuring the specific gravity of the finished material and comparing

it with the theoretical specific gravity for voidless TFE of the same

0
,} r
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cr:-stal!inity, tne percentage of void space in the finished rnaLerial can

}_.............,-._1,-,,I_,o_ _-t-,t"........ ...,.,,_d as ¢,- p,_i',,:.t,_ge of the totai volume, the answer

is ,'alled the void content.

When TF_: is being processed into a seal, the three factors of

. molecular weight, crys_allinity, and void conter: should be adjusted within

, the a,aiiable linlits to develop a seal with the best properties for the

" intended us,:.

Tensile rtr,.,_eth is affected by all three of the basic factors pre-

viously menti_,ned: average molecular weight, crystallinity, and void

content. Tensile strength increases with increasing mol.ecular weight.

The molecular weigbt cannot be increased over that originally present in
1

the resin but it can be decreased unless thermal degradation is avoided.

Sintering temperatures above approximatel¢ +734°F may result in degra- k.

dation by the successive removal of monomers CF2CF 2 from the en_s of
the chains.

Tensile strength is best at low _evels of crystallinity. Low crystal-

l[nity is achieved by quick quenching after sintering.

• Low void content makes for good tensile strength. Void content is

not very controllable sirtce it is largely a function of the size, shape and

porosity oftl:.e particles in the resin; careful control over the sintering

temperature wit1, however, help to avoid unnecessary inc,'eases in void

content.

¢

It can be seen from the above that the tensile strength of a part

pruduced from a given resin is maximized i.f the proper sintering temper-

ature is carefully maintahmd and then the part rapidly quen:hed. This

process results i, a part with high average molecular weight, low crystal°

linity, and low void coy.tent.

W1-Ale the average molecular weight is desirable in that it yields

high tensile strengths, the elongation i_ less than maximum at this

condition. Shorter TFE chains give better elongation. To a degx'ee, the

same dilemma is faced in the choice of crystallinity objectives because

higher crystallinity, up to 85 percent, results in greater elongation as
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opposed to _b,e need ,'.'or lower crystallinity for best tensile strength. A

O low void content .aires both exir_ _1,_,_,_+; .... cxtia _reng;_,.

Opt':mizin.-_. TFE beco.'_.e_ even _:mre complicated, however, when a

lew flexnaral mcdulus is desired. Average molecular weight does not

seem to have _.uch effect but crystallinity should be low, as with tensile

strength, and void content should be high, contrary to the need for low

void conteht to get high tensile strength and great elongatior. To illus-

trate the sensitivity of flexural modulus to crystallinitv, fast quenching

to keep crystallinity low may yield a mo]u!us as low as 55, 000 psi while

slow annealing may increase the crystallinity enough to raise the modulus

to 90, 000 psi.

" Based on experience with TFE dilms , a high average molecular
weight and low crystallinity are the best compromise to achieve dur-

ability. This seems to imply that tensile strength and flex-ura!modulus
. are more important than elongation. This is corroborated somewhat by

; the fact that Du Pont reports that flex life is increased by adju._ !ug the

- basic factors in the same way as required to increase tensile strength. _

In some cases the demand for low permeability may create an over-

";'* riding consideration in favor of low void content. Permeabilit)_ to most

;:, fluids used in rocket systems is strongly a function of the void content

:'- -less void giving less permeation. To a certain degree permeability is

_ affected by the crystallinity (decreasing permeability with increasing

"_ crystallinity) but average molecular weight seems to be insignificant in

". connection with permeability.

_ It should be no_ed that void content may drastically affect other

t properties as well. Reference 5q reports that void content in TFE can

_ reduce flex fatigue life by 1000 fold, increase permeability by 1000 fold, 1

,_. decrease Rockwell Hardness by 30 percent, decrease Tensile Impact

i Strength by 80 percent, decrease the P_-oportional Limit and yield stress

both by 20 percent, decrease Ultimate and Tensile Strength by 50 percent,

and decrease Ultimate Elongation by 30 percent. Hence, density measure-

ments are recommended to ascertain the void content in order to predict_he degradation in properties to be expected.

,: (
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T]FE density changes about 6 percent when the crystallin'ty varies

• from 47 to 84 percent. Actual density, P, is reduced in di_-oct n_-r,,_,_--_;,-,,

:, :, to _he void ccntent:

_. P = P ( 1 - __V.__.) where: P = inherent den.o_ty at zero void ,:c,ntent
r o !00 o
= V -- voi A. content as a percentage

/

Temperature also affects density. Thermal expansion/contraction

.- data should be consulted to determine the magnitude of density changes
-L

versus temperature. TFE decreases in volume by about 4.3 percent when

chilled from +68 ° to -100°g (Reference 85).

; The calc,:lated buik compressibility of TFE i_, 2.07 x 105 psi when
5

kept under load for 200 hours; and 1.57 x 10 psi when under load for

one year. Poisson's ratio for TFE is 0.46.

: TFE is slow to recover after being strained, recovering only 59

percent of its compressive strain when ,_he reduced time is 1 (i.e., recov-

ery time is equal to the time under load).

TFE apparently experiences elastic wear at rates which are approxi-

mately proportional to the modulus of elasticity and inversely proportional

• to the yield strain (Reference 54). Reference 30 suggests use of the PV

relation to estimate the wear of Teflon:

-7
t = 2.5 x 10 RVT,

where: t = wear, in.

P = pressure, psi

V = velocity, ft/rnin

T = time, hr

TFE is among the most severely degraded of materials when exposed

to radiation (Reference 51).
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4.3. 1.2 FEP Teflon

l
.,r._ 1..22 .,_

_ __,_- was developed to provide for a genuine thermoplastic with

TFE's properties. This material is the copolymer of TFE and hexa-

fluoropropy'lene (H_P). HFP may be d_agrammed as below.
s

F F
! I
C = C
J I

F --C--F F
I

k F

:. ]L_he copolynler fluoroethylene-propylene (FEP), then, is dia-

gran_med as :

$.
F
I

F--C --F

I I
F F F F

•" I l I IC

-_ --C--C--C--C

F F F F

Thousands of these copolymers are connected together in the solid FEP

material• Pure FEP tends to be more nearly colorless and transparer_{

than TFE. FEP made with the aid of wetting agents has a tendency, how- !

ever, to look more brownish than TFE because it is less permeable, and

therefore the wetting agents do not escape as readily during the sintering

process as they do from TFE. Also, FEP is sintered at lower tempera-

tures than TFE so there is less active volatilization of the wetting agents.

FEP, like TFE, is s::_pplied by Du Pont both as a solid (in pellets)

and in a dispersion. Unlike TFE, however, the PEP can be melt-processed

sLr.ce it is thermoplastic. Extrusion, injection molding, and vacuum

forming are common methods of making parts of FEP. It can also be dip

coated onto many different substrate materials and heat sealed, either to

itself or to TFE.

0
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. The structural nature of FEP is more definite than that of TFE

i: because the average crystallinity of FEP v,hi h has not been _hpr_rr___al!_,

; de_raded is essentially independent of variations in processing. In other

words, crystallinity will be between 40 and 57 percent regardless of the

• cool down rate after sintering. The average molecular weight is

unchanged from that in the resin unless excessive sintering temperature
/ are reached.

When chilled from +68 ° so -100°F, FEP shrinks about 3. 1 percent

in volume, or about 28 percent less than TFE.

FEP film is noticeably more prone to pinholing, an occurrence of

" small fractures due to folding, than TFE and is also more subject to

cold flow. TFE can be used at higher temperatures than can FEP, but

FEP retains its flexibility better at low temperatures. FEP is also less

permeable than TFE.

Work on propellant expulsion bladders has revealed that FEP is

much nnore prone to solvent-stress-cracking than is TFE (Reference 60).

N204, MMH, Freon TF, heptane, and isopropyl alcohol were the fluids ".
used in the tests. MMH had the least effect, closely followed by the

alcohol. Some evidence may be interpreted to indicate that TFE's resis-

tance decreases as the crystallinity increases.

FEP may be slightly less resistant to radiation damage than TFE.

4.3.1.3 Filled Teflon Materials (Reference z0Z)

Many fillers have been added to the basic Teflon resirs to provide

a special purpose material, which exhibits an improved property, usually

degrading some other property not as important for that application.

Some of these improvements are:S

. • Increased wear resistance

: • Increased creep resistance

. • Increased thermal conductivity

• Reduced thermal expansion

• Change in electrical properties.

)
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Fillers commonly used with Teflon include: glass fibers, carbon0
and _raphite, n_et_l_ (primarily bronze}, _,_l,tl oxides (primarily lead

oxide and cadmium oxide), and others such as ceramic material_ and

molybdenum disulphide.

The choice of filler material is not sinaple since the performance

of specific fillers cannot always be predicted. Empirical evaluation is

generally required with the filler in the planned application to determine

suitability. Table 4.3-4 provides some mechanical properties data on

some filler materials.

It is always considered advantageous to minimize the fil!er content

co_._mensurate with other require_-nents. The following tabulation identifies

some properties and indicates the limits of a potential filler material.

Property Limit in Filler Material

Heat stability - Fille_" must withstand sintering tempera-
ture ¢ Teflon TFE (approx. 750OF).

Particle shape

Fibers and platelets - Maxir :._._._ _.Lnforcement by overlapping
but may result in anisotropic properties.

Irregular shapes - Irregular and angular provide maximum
mechanical bond, but may be abrasive.

Spheres - Minimum chance of abrading but also
minimum reinforcement and mechanical
bond. t

Particle size - Large particles result in a non-homogeneous
mixture and possible variation in properties.

Small particles may coat the PTFE pre-
venting good adhesion between Teflon
particles.

: Thermal and electrical properties also may

be influenced by particle size.
0-
¢,

Particle surface - This affects adhesion and bonding. If a
finish good crosslinking agent is present, improved

wear and creep properties would result.
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Property Limit in Filler Material ""

2'.
=ILLLL= 5trtictui'e III_ I_IIUII ¢Ifld rJ - zl_e rnixture will have .

:' and properties between the constituents.

Physical properties • To reduce creep - a fiber with high
modulus and high tensile 3trength
required.

/ • To retain iow friction - a ductile filler
- with low shear rate and low surface

" activity required.

• To reduce wear - not established but

good thermal conductivity is a factor.

-. Chemical properties - Determines chemical resistance to com-
posite and could influence wear.

Other properties It is undesirable for:

- The filler to agglomerate readily since it
makes blending difficult.

- The filler to be hygroscopic since it leads
to problems in mixture.

- The filler to react with Teflon TFE.

4.3.1.4 TeflonData

The dataprovidedin the followingtablesand figuresis basicdataon

T_flonproperties.SinceTeflonis well characterized,referencesare

availableto obtainspecificdataand are providedin this section.

. , In Table4.3-4 the basicmechanicalpropertydata is shownfor Teflon

TFE, FEP and two typesof filledTeflon. This tableprovidesa good com-

i parisonof the variousTeflontypesand the differencesbetweenthem.

Table 4.3-5providesPV factorsfor Teflon,indicatingcapabilitiesand

limitationsfor slidingor relativemotionapplications.Some references

for additionaland more comprehensivedataare shown in Table 4.3-6. Using

thesereferencesmost Tefloncharacterizationdatamay be obtained.

The figuresprovided,4.3.l through4.3.12provideadditionalbasic

data. In 4.3.1the stressstrainproper*iesof TeflonTFE in air are shown,

indicatingthe goodstrengthpropertiesover a wide temperaturerange. -_
J
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i Figure 4.3.2 provides the same information for Teflon FEP indicating "
@

generally a )ower strength level for the same strain particularly in com-

parison at elevated temperatures. Figures 4.3.3 through 4.3.6 indicate

. the degree of deformation which Teflon TFE and FEP will experience under

i_ a tensile load at temperatures of -65, +75, +212 and 392°F (FEP 347°F).
&

These data are provided as a function of applied stress resulting in data

> useful for evaluating the effect of applied loads when subjected to temper-

< ature variations. In Figures 4.3.7 and 4.3.8 the total deformation under

' compressive load at +75 and +212°F as a function of applied stress is

. provided. The degree of recovery or resilience after an applied compres-

sive load is shown in Figures 4.3.9 and 4.3.10 at +75 and +212°F.

• Table 4.3-7 provides an indication of propellant compatibility of

Teflon with N204 and UDMH. Since much of the basic compatibilitywork

" with Teflon was accomplished some time ago, most existing data are in the

form of summary properties rather than specific numerical data. This is

primarily because Teflon was proven to be the most propellant compatible

polymer generally available. Although, as shown in Table 4.3-7, there is

some scatter in data and results, the conclusions generally indicate that

little permanent change has resulted from propellant exposure.

Reference 199, summarizes other testing as follows in N204 for 70

days at 75°F Teflon exhibited:

o 2 to 3% volume increase t

o 0.5% weight increase

; o 20% hardness loss

o 11% increase in elongation

o 11.5% reduction in tensile strength

After 20 days in N204 Teflon FEP exhibited:

o 1.6% volume increase

o 0.4% weight increase
F

o 38% hardness reduction

o 2.9% increase in elongation ii

20.5% reduction in tensile strength0
r

i| •
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- For both Teflons, the chanQes in physical _.nrnn:mf_a__r-' _,_ took place wi*_n_,,f

_: the first two days of immersion, after that time all other changes were

i_ nearly zero (with the exception of the FEP, Teflon loss of hardness which

_ was linear with time). In the same reference, it was noted that during

_ an investigationof potential bladder materials immersion of Teflon TFE

/ and FEP in N204 at 275°F for periods up to 88 hours resulted in approxi-

_ mately 7% strength reduction and up to 50% change in elongation. It was
L

also noted that the N204 washed out particles of Teflon which caused the

N204 to turn "milky".

? i As indicated by these data, Teflon is a good polymeric structural

material with a high degree of inertness. Its value has been shown by
the number of applications shown in Tables 4.3-2, 4.3-3 and 4.3-4. There

are limitations and deficiencies as indicated by mechanical and propel-

lant data.

\.

The major deficiency is the tendency to "cold flow" or continuously

deform under load. Although some data provided in Reference 30 and pre- )
sented in Figures 4.3.9 and 4.3.10 indicate some degree of recovery after

: an applied load is removed, most application information shows a high

degree of permanent set, approaching I00% under high loads or elevated

temperatures or a combination of conditions. Another problem area when

used as a seal is a tendency to be contamination sensitive. The tendency

i fs less than with a hard material, but is pronounced in a system exposed

to contaminants. The capability to absorb contaminant particles is

: Iimited.

A major factor in the use of Teflon for sliding applications is the

'i tendency for Teflon to flake. These flakes become contaminants and maybecome partially embedded in the seal, creating a leak path. The ten-
1

i dency for Teflon particles to be washed out as a result of N204 exposure
also creates a potential contamination problem to the seal or other

i system components. Although there are many advantages to the use of

i Teflon, offsetting disadvantages indicate the desirability of replacing%

1 it with another material for long term, multi-use applications

1
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Table 4.3-5.

Teflon and Selected Filled Teflon PV Factors

(Reference 30)

\ 15%
Glass 15%

Parameter FEP TFE Fiber Graphite

• PV Limit(lb./in.2 x ft./min.)

I0 ft./min. 600 1,200 lO,O00 lO,O00

I00 ft./min. 800 1,800 12,500 17,000

l,O00ft./min. 1,000 2,500 15,000 28,000

PV for 0.005 in.
radialwear in 1,000hr. <lO 20 3,100 1,500
(nonlubricated)

)

(
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. .. Table 4.3-6 Sources of Properties Data for Teflon

Property Reference Number*

• Teflon FEP TefTon

_" Stress-Strain _iagram, Tensile 93, 94, 95 93, 94

_ Stress-Strain Diagram, 93 93

/ _ Compressive

C' Stress-Strain Diagram, Shear 93 93

_ Modulus of Elasticity,Tensile 94, 99 94
Modulus of Elasticity, 94, 99 94

';. Compressive

@ Shear Modulus or Modulus of 94 94
Rigidity

Poisson's Ratio 93 93

Ultimate Strength, Tensile 93, 94, 99, 101 93, 94, 102
, Ultimate Strength, Compressive 94, 9g 94

Ultimate Strength, Shear

Yield Strength, Tensile 93, 94, 99, IOl 93, 94

Impact Strength or Toughness 93, 94 93 5_, 102

".. Creep, Tensile 93 93, IO2

Creep, Compressive 93, 95, 99 93, 102

Creep, Shear 93 93, 132

Relaxation,Tensile 93 93

_et, Compressive 99

,:,- Elongation at Rupture or 94, 99, I01 93, 94
Break

Recovery, Tensile 93 93

'_ Recovery, Compressive 93, 95 93

Fatigue, S/N Curves or 93 93
FnduranceLimit

Abrasion Resistance 93 102

Wear Factors 93, 99 g3

Friction Coefficient, Static 93, 99 IO2

Friction Coefficient, Dynamic 93, 99 93, ]02

Hardness 93, 99 102

PermeabiIity 97 97, 102

Density 93, 95, 99, I01 93, I02

Thermal Expansion/Contraction 93, 94, 95, 9g, 93, 94, 100, 102
• 100, 101

Themal Conductivity 93, 95, 99, I01 I, I0, 93, 102

Specific Heat 93, 95, 98, 101 l, 10, 93, 102

•Refer to &Ibliography
J i|i ii ii

L
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_ _. 4.3.2 KeI-F_::

' _" Polychlorotri¢],,n_'_,_+r'_lcne (PCTFE) is commonly called Kel-F but

this also is a registered trademark, in this case belonging to the Minne-

" sota Mining and Manufactur':ng Company. PCTFE is marketed by several

_ suppliers under their own trade names.

. :: Kel-F is the same molecule as TFE except that every fourth fluorine

atom on the backbone chain of carbon atoms is replaced with a chlorine

#.. atom. The Kel-F monomer (CF2CFC1)may be diagrammed as below:

- :_ F F

_ C=C

F ¢1

.. This inclusion of the chlorine atom is beneficial in its effects on

mechanical, rheological and optical properties. However, it is somewhat

detrimental in its effects on chemical, electrical and frictional properties

and thermal stability.

The degree and kind of crystallinity in a given sample of Kel-F is

; a function of its thermal history. Quick-quenched resin tends to be more

amorphous thar slow-cooled resin. Only relatively thin samples can be

quenched rapidly and completely enough to inhibit crystal growth. In all

:: cases some crystal nuclei develop even when molded or extruded parts

are cooled rapidly. Prolonged aging at 300-390°F will increase thecrystallinity of relatively amorphous samples.

:_ At higher degrees of crystallinity, Kel-_ is a denser, less trans-
! parent material with higher tensile modulus, lower elongation, and

greater resistance to the penetration of liquids and vapors. The "amor-

phous" plastic, on the other hand, is less dense, more elastic, optically

,-lear and tough.

( ":'Portions of this section are taken from Reference 100 and refer to Kel-F
81 plastic.
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Molecular weight plays a vitalrole in the crystallizationprocess.

Long-chain molecules are slow to form crystal nuclei and reluctant to
/ rearrange themselves into large spherulites. Consequently, components

- made from high molecular-weight Kel-F are strong and tough and there-

fore retain amorphic properties even after extend,- _ aging at high tem-

peratures. In contrast, parts produced from resin degraded to low mole-

cular weight during processing are susceptible to excessive crystal-

lization and embrittlement. Molding conditions must be carefully con-

trolled, therefore, to make sure that f_nished part_ retain to the fullest

extend possible all the properties inherent in the resin.

Kel-F is the finally stable well above its melting point of 414°F.

Compression molding at 500°F causes little or no degradation, whereas

injection molding and extrusion at much higher temperatures (up to 650°F)

degrade the resin to some extent. In this comaection, it is important to

distinguish between reversible changes which occur in the resin _hrough
%

heat treatment, i.e., through "quick quenching" or "slow-cooling, " just

below its melting point, and permanent changes which may occur because

of overheating above the melting point (chain scission or degradation to a

lower molecular weight).

Since it is a true thermoplastic, K,;1 .F can be fabricated by ordinary

means, but high temperatures (500 ° to 600_F) and specially designed

equipment are required. The relatively high molding and processing

temperatures used to fabricate Kel-F components generate internal

stresses. In many cases, stress relief of the plastic before finished _'

i machining and use is advisable to assure dimensional stability with age

and temperature variations.
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KeI-F has l)etter strength than TFE below 210°F, and much greater

resistance to cold flow than TFE. Its impact strength is good, some

degrees of crystallinity gi,,_ng as good or u_r' values than some TFE

samples.

Although KeI-F is swelled (but not attacked) b,, some chlorinated

J solvents at high temperatures, it is completely unaffected by most

, chemicals, including most concentrated acids. Stress-cracking has been

a problem_ however, under some conditions.

_ The threshold dose of radiatioP for a given degree of degradation

in KeI-F is about five times that for FEP.
L

Table 4.3-8 provides basic mechanical properties of KeI-F 81

plastic. In Tables 4.3-9 and 4.3-10 the permeability and chemical

; resistance to fluids are indicated. No effect of UDMH exposure for 7

days at ambient temperature is seen while N204, as expected, causes

appreciable changes. Solvents do not adversely affect Kel-F with the

exception of Trichloroethylene,which causes permanent dimensional and

weight change.

• Reference 199 states that KeI-F (300) exposed to N204 at 75°F for

70 days became very soft, _howed a 6% volume increase, 72% loss of

stre,lgthand a hardness loss of 3"6%. Therefore, Kel-F is not recom-

mended as a seal material, particularly for N204 service. Althoughw

superior to leflon in some areas, primarily cold flow, and strength up

to "_lO°F, it retains other deficiencies i_cluding a low degree of

contaminationtolerance thereby, in general, resulting in a po_ -erseal

• material than Teflon.

Other Kel-F applications indicate (Ref. 71) that after 4 hour

exposure to N204, Kel-F strength is reduced to that rf Teflun. In

addition, exposure to amine fuels caused cracks and checks which

damaged the sealing surfaces. In another case, Kel-F seals in amine

fuel turned black and became brittle. In another application (Ref. 71),

Kel-F used as a butterfly valve seal _n N204 weakened after N204 exposure

such that the operational life was essentially ltmlted to one cycle.

("!
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Table 4.3-8 Kel-F tql} Plastic Mechanical Properties
(Reference 100)

Temperature
Property °F CrystaI1ine Amorpnous

Tensile Properties
Tensile Strength (psi) 77 4630 4650

77 5200 5260
- 158 3550 2900

25B 540 575 f
Elongation (%) 77 120 160 _:

77 125 180
158 330 330 ;
258 > 400 > 400

Yield Point (psi) 77 5200 4800 i
77 5300 4 _00
158 2700 1600
258 560 340

Yie]d Strength (psi: 77 2450 2000
O.2% Offset 77 33=0 2600

158 1600 1100
258 350 180

Modulus of Elasticity 77 190 x lO3 157 x lO3
Tensile (psi) 77 190 x 103 160 x 103

158 97 x 103 55 x I03
258 20 x 103 6 x 103

Flexural Properties

Flexural Strength (psi) 77 9600 8600
158 5070 3150
258 1700 700

Modulus of Elasticity 77 238 x 103 185 x 103
Flexure (psi) 158 133 x 103 79 x lO3

• 258 37 x 103 15 x 103

Compressive Yield
Strength - 0.2%
Offset (psi) 77 5500

llooulusof Elasticity
Compression (psi) 77 170 x lO

Shear Strength (psi) 77 5400 5600

Deformatio,,Under Load 77 0.20 0.40
24 Hrs/lO00 psi (%) 158 0.40 7.12

(%) 258 4.00 > 25.00

Heat Deflection

66 psi 258°F

264 psi 167°F ' -_
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I _.b Table 4.3-9 (Ref.I00)

• I _" Pe_neabilityof Kel-F (81)Plastic
i

,_,,_,a_u,= PermeabiIity
Gas °F

1 ec - cm2 cmhg

L

_ N!trogen +32 .05x lO-lO

'" 77 .30x lO-I0

Lc 122 .91x 10-lO

Helium 77 21.7 x lO-lO

Table4.3-I0

-- KeI-FPropellantand SolventResistance(Ref.lO0)

17 Days at 77°F)

_rystalline I Amorphous 1
1% Weight % Volume % Weight % Volun_

_, / Chanae Change Change Change

Nitrogenletroxlde(41°F) 8.2 9.4* 9.9 10.5"

UDMH 0 O.8 O.l _.l

Freon 113 o.g 0.6 o.g 0.4 "

Ethanol, 95% 0 -0.8 0 -0.7

Trichlorethylene 1.8 1.5 3.0 1.9

• Water (2_ Oays/77°F) 0 0 0 0
n_

*Materialturnsrubbery •
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4.3.3 _ (Reference 103)

; o Kynar is a fluorinated thermoplastic resin, a high molecular weight

polymer of vinvlidPnp fl,,n_iA_ v..... •- ........... v.,_, contains 59% fluorine and has the

chemical structure shown below. Kynar is a registered trademark of the

Penwalt Corporation, Philadelphia, Pennsylvania.
/

.... CII /CII: Cll
_'CI:: _(:F. / _CI:: - ---

This polymer is characterized by mechanical toughness, thermal

stability, resistance to gamma radiation and resistance to many chemicals

ana solvent. It can be processed by compression molding, injection mold-

ing and extrusion among other techniques. Kynar is resistant to most

acids and bases but the degree of affect is dependent on application,

stress levels, etc. Strongly polar solvents such as Ketones and esters

cause partial solvation, with increased effect at elevated temperatures.

The basic physical properties of Kynar (Grade 18) are shown in

Table 4.3.11. lhese properties generally indicate a good structural

plastic capable of fab.'icationand load-applicationunsupported. As with

many molded or extruded polymer resins, the properties of any given part

is highly dependent on quality cr forming and location in the bar as

fabricated part since the edge effects can be appreciable.

A brief indication of propellant and cleaning solvents effects are

shown in Table 4.3-12, for a 30 day 122°F exposure.

Other propellant tests (Ref. 167) indicate the following: In N204

at 150°F for 48 hours, Kynar film properties degraded to 73% of original

tensile strength, and 10% of original elongation. In this case the

color of the Kynar changed from tan to green. At room temperature for

13 months in N204 no change in tensile properties were noted, but the
. color changed to white. Hydrazine exposure for the same period resulted

in some embrittlement and color change to yellow. The permeability of

: 7 mil Kynar film is reported as 95 to I00 mg/mil-day-atmosphere-in2 for

exposure periods of 48 and lO0 hours. The rate for 21 hJurs is greater,

i (160 mg/mil-day-atmosphere-in2) being the initial saturation period.
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Figures 4.3.15, 4.3.16, and 4.3.17 provide additional air exposure

properties data. Cold flow resistance for crystalline resins at 2000 psi

stress is very good as noted by I0,000 hours test date (Ref. !03).

:. Increased load or amorphous resin reduces this resistance. Linear thermal

• expansion and TGA analysis data are provided in Figures 4.3.16 and 4.3.17.

/ There is considerablevariation in reported results for Kynar after

- _ exposure to propellants. Undocumented application data, particularly in

;_: test facility applications have shown Kynar deterioration through embrit-

tlement and surface cracking after exposure to N204 for extended periods

. _, of time under stress. Valve seal chipping has been experienced under
these conditions. At elevated temperature the effects would be expected

_2 to accelerate.

_:_ Reference 199 also indicates marked deterioration of Kynar when

exposed to N204 at 275°F. Although some data indicate minimum effects,

_ there are sufficient inHicationsof severe attack to conclude that Kvnar

is not recommended for use in propellant systems and should be avoided

in systems exposed to propellant vapors for extended periods of time.

. 4.3.4 Viton (Ref. I06)

Viton is a family of fluoroelastomersmanufactured by E. I. du Pont

de Nemours & Co. (Inc.). The name Viton is a trademark of that company.

This elastomer family provides a range of combined heat and chemical

_,i resistance, but is not suitable for use with propellants.

_- Du Pont lists the continuous service limits as 3 years at 400°F;

•_ 3000 hours at 450°F, I000 hours at 50Q°F, 240 hours at 550°F and 48 hours

_ at 600°F. There are presently eight types of Viton. These are Types A;

. A-35; A-HV; B; B-50 and E-60C which are considered general purpose, d

Viton LM and C-lO which are specialty types.

Viton A

Viton A is a general purpose high temperature and fluid resistant

polymer with a Mooney viscosity in the range of the more conventional

synthetic elastomers. Viton A processes well and is used in making

molded and extruded O-rings, gaskets and seals.
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Table 4.3-11. Physical Prope_ies of Kynar (Grade 18)
: (Reference 103)

rPROPERTY • "_ ....y/_LUE.

Tenslle strength, 77°F (psi) 7000

Tensile strength, 212°F _psl) 5000

Elongation, 77° (%) 300

Elongation, 212°F (%) 400

Y|eld point, 77"F (psi) 5500

Yield point, 212°F (psi) 2500

Creep, 2000 psi, 77"F, 10,000 hrs. (in/in) 0.02

C_mresstve strength, 77"F (psi) 10,000

Modulusof elasticity, 77°F

in tension (psi) 1.2x105

in flexure (psi) 2.OxlO5

in compression (psi) 1.2xlO5

Izod impact, notched, 77°F (Ft-Lb/ln) 3.8

Izod impact, unnotched, 77°F (Ft-Lb/In,' 30 _

• Durometer hardness (Shore D) 80
Heat distortion temperature, 66 psi (°F) 300

Heat distortion temperature, 264 psi (°F) 195
Abrasionresistance, Tabor

CS-17, 1/2 kg load (mg/lO00 cycles) 17.6

Coefficient of slidtng friction to steel 0.14-0.17

Thermal coefficient of linear expansion 8.5x105

Themal degradation temperature (°F) > 600

Meltingpoint, crystalline (°F) 340

Specificgravity l .76
!

.-)
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Table 4.3- 12. Effects Of Propellant A, Solvent Exposure

on Kynar (Reference 103)

_. , TensileStrength ,

Fluid AfterExposure
• (PSI) ......

•_. NitrogenTetroxide 6500
f- i
'_" UDMH 4700

i

Hydrazine 5800

Trichlorethylene 6700

Ethanol 6000
-L

• Specimenis 5 mil film

• ExposurePeriod30 Daysat 122°F.

• ControlSpecimen- 7200PSI Tensile
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._; Vi ton A-HV

i, ,f. Viton A-HV, is a high viscosity grade of Viton A. Due to its high
• mo,euu_dr weight, it produu.s vulcanizates with improved hot strength and

better resistance to compression set. Viton A-HV is particularly useful

"_ ".. in high-pressure, high temperature sealing applications.

4,. Vi ton A-35

"" __ Viton A-35 is a lower viscosity grade of Viton A and is, therefore,

,, safer and easier to process than Viton A. In general, vulcanizates of

x_. Viton A-35 have tensile strength and modulus values 10 to 20% lower than

_i Viton A, but other properties including heat resistance, and tear strength,
,¢,,

._ are quite similar.

': Viton B

,_ Viton B is a Viton polymer with better heat and fluid resistance

' than the A-types, and a Mooney viscosity and processing characteristics

intermediate between those of Viton A and Viton A-Hv. Both Viton A and

: "- Viton B are resistant to long term aging at 400°F but each reacts in a

,, -" different manner to such exposure. Viton A is superior in retention of

_" tensile strength but Viton B is better in retention of elongation.

_' Viton B-50

i;
:_ Viton B-50 is a low viscosity grade of Viton B. Compounds of Viton

_. B-50 are safer processing, smoother extruding and have better mold flow

_ characteristicsthan those of Viton B. The original tensile strength. and elongation of some formulations based on Viton B_50 may be somewhat

_,' lower than those of Viton B but the heat and chemica_ resistance of

Viton B-50 is equal to that of Viton B.

Viton E-60C

Viton E-60C is a new polymer which offers increased resistance to

high temperaturecompression set. In addition, Viton E-60C has all the

advantages of Vitor,E-60 the base polymer and superior compound storage

stability, processing safety, ._ndfast cure rate. Viton E-60C can be

cured in thick sections.
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VITON LM

Viton LM is one of two specialty types of Viton that have bpen

developed to meet certain specific needs in the area of heat and fluid

resistant polymers. Viton LM is a very low viscosity grade of Viton

designed as a processing aid for the higher viscosity polymers. The
J

. use of small quantities of Viton LM in a compound of Viton A or Viton B

improves the molding and extrusion properties of the compound with some

sacrifice in vulcanizate performance. Heat resistance, chemical resis-

tance and compression set re:_istat_ceof vulcanizatescontaining Viton

LM as a processing aid are affected to some extent.

Viton C-I0

Viton C-lO, the second of the specialty types, is a very low vis-

cosity Viton that is particularly useful in caulks, sealants, high

solids coatings and other applications where high concentrationsof

polymer in solution are required. Compositions based on Viton C-IO

have the same fluid resistanceand thermal stability after curing that
i

are normally associated with the higher viscosity Viton polymers.

Most system sealing applications appear to use Viton A or B, with

E-60C increasing in use as application data is increased. Viton E-60C

is relatively new but, for systems experiencing h',h temperatures

appears to be a good selection. Table 4.3-13 summarizes properties •

of the various Vitons and Figures 4.3.18 thru 4.3.22 provide additional

data on Viton A, B and E-60C. Tables 4.3-14 and 4.3-15 provide

additional Viton Data.

Viton materials are not normally used or recommended for propel-

lant service although Table 4.3-14 indicates some tests with N204.

The r3sults indicate a degree of incompatibilitywhich would be un-

acceptable, since degradation occurs at room temperature in 7 days.

Vlton is made from monomers including vlnylldlne fluoride (-CH2=CF2-)
which has "readily oxiJizabie" hydrogen atoms compared with the fluorine

atoms, thereby promoting degradation in oxidizers. Also, because of the "_
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&_ vinylidine fluoride which has F next to H atoms, the H is activated

(i.e. becomes more acidic) becoming acidic enough to react with basic

hydrazine, particularly as the temperature is increased.

The primary use and proper application is in hydraulic systems,

and systems (non-propellant)exposed to elevatea temperaturesor other

adverse conditions. Viton compounds should r,ot be utilized in Space

Shuttle storable propellant systems or systems expnsed to propellant

_. vapors for extended periods of time.

J

.¼.

°_
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Figure 4.3.22 VJton A and Viton E-60C Lor,g Term
CompressionSet (O-Rings) (Ref. 105)

4.3.S

Vespel is a polylmideresinmanufacturedby E. I. du Pontde Nemnurs

• & Co. (Inc.)and is a trademarkof thatcompany. The materialis charac-

terizedby toughnessand heat resistance.The typesof Vespelcompounds

are SP-I,SP-21,SP-22,SP-31,SP-5 and SP-211. Table4.3-16indicates

the typesand compositionsof thesevariouscompounds. The manufacturer

indicatesan operatingrangeto g00°F in some applicationsand a con-

tinuousservicetemperatureof 500°Fto 60()OFtn alr. Cryogenicapoll-

cationsat -420Fhave indicatedsuitabilityfor this temperaturerange.

The filledVespelsare L0X impactsensitive,whileSP-I is nomlnallynot

L0X impactsensitivealthoughsomedataare conflicting.

Table4.3-17summarizesthe mechanicalpropertiesof eachgradei
The good frictionand wear characteristicsare shown in Table 4.3-18.

I effectsof exposureto N204 and UDMH.
Table4.3-19 indicates the

As showntn th|_ table both fuels end oxidizer attack Vespa1and result
In propertydegradations.Littledataare avallablerelatedto vapor

applications but it can be concluded that someattack wtll occur.

; , The optlmumappllcatlrnfor thismaterialwould appearto be in

inertgas servlceor with cryo,_:i,lcmedia.
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Figures 4.3.23 through 4.3.33 illustrate tensile strength,modulus
:i

of elasticity as a function of temperatures,as well as stress strain

characteristics, deformation tendency,, fatigu_ r_n_............... ="_ _,,=rmal

characteristics. The most commongrades are SP-I, SP-21 and SP-22 as

shown in these figures.

Vespel is a good structural seal material but is not propellant

compatible as shown in Table 4.3-19, and should not be considered for

propellant systems. Potential applications could include gaseous

systems and cryogenic systems. Some investigation has been conducted

related to Vespel sealing properties at low temperatures. At ambient

and higher temperatures this plastic exhibits lack of tolerance to

contaminants typical of a plastic.

Table 4.3-16. Compositions and Characteristics of Vespel
(Reference llZ)

Resin Property
Designation Description Characteristics

i J

SP-I Unfilled base Structural parts where maximum
• resin strength is required. High-

temperature resistance.

SP-21 15 weight % Graphite formulation for non-
(nominal) lubricated seals and bearings.
graphite

SP-22 40 weight % Similar to SP-21 but offers I/3
(nominal) tess thermal expansion.
graphite

SP-31 15 weight % Non-lubricated seals and bear-
tnominal) ings in vacuum or dry environ-

, molybdenum ments.
i disulfide
.!
i SP-5 42 weight % Precision mechanical parts
1 (nominal) requiring low thermal

short glass expansion.
t fibers

#

SP-211 SP-21 base Uniformly low coefficient cf
with 10% friction over a wide range of

i Teflon operating conditions.

{
I
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,_ Table 4.3-18 Coeff_clentof _rtctlonand WearCharacteristicsof Vespel

(Reference112)
,

Parameter SP-I SP-21 SP-22 SP-31

Wear Rate (unlubricated)
. (in./lO00hrs)

in nitrogen(PV = 25,000) O.OlO-O.Ol5 0.004 0.05

- illair (PV = 25,000} 0.25-1.2 0.09 0.06 0.26

, Coefficientof Friction
' (steadystate,

unlubricated)

in nitrogen(PV= 25,000) 0.04-0.09 0.06.42.08 0.05-0.08

: in air (PV = lO,O00) 0.49 0.35

in air (PV = 25,000) 0.29 0.24 0.30 0.24

in air (PV= 50,000 0.23 0.I0

" in air (PV= go,o00) 0.21

in air (PV= lO0,O00) 0.07 o.og

in air (PV = 315,000) 0.04 )

" Staticin air 0.35 0.30 0.27

Table 4.3-19 Propellant and Solvent Compatibility of Vespel

(Reference 112)

(

TensiIe Elongation %
% Retention % Retention Wt

: ' F1uld SP-I SP-21 SP-I 5P-21 Change
¢

NItrogenTetroxide
(120 hrs at R.T.) 60 60 60 60 +3

UDMH 45 45 65 65 -
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_ Figure 4.3-33. Th_rma/ Expansion of Vespel SP-22 )
- (Reference 112)
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_- 4.3 6 Carboxynitroso Rubber (CNR) _:°

CNR belongs to a family of elastomers known as nitroso rubbers.

This family is represented by the structure sho_ in the following generic

formul ation.

f !

... [N-O- (C)x]

The first member of this family of polymers is the copolymer generally

referred to as nitroso rubber. The synthesis reaction for preparation of

this copoly-'ner is shown below.

Thc outstanding characteristics of nitro_.o copolymer are its

CF_NO + CzF / I N-O-CFz-CFz ]nI
CF_

Elevated

Te nape rature s

CF3N O + CzF4 ., CF 3-N-O
• F,C - F,

solvent resistance, oxidizer resistance, low T (-60°F) and non-flammability
g

{even in pure oxygen}. The terpoly-mer is essentially the same as the

copolyrner with very small amount _ of pendant perfluorobu%rric acid•

Terpoiyrners with various acid percentages have been studied and the most

promising concentrations for use as an elas*.omer hvve ranged from G. 5 to

1.5 mole percent. The structure is shown below:

"_-N-O-CFz'CFz-{99 "_ N-O-CFz-CFz']- t

, !CF3 ( Fz)3

COOH

r

*Mont of this information is obtained from References 66 and 67. )
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: T"'o types of c_res are used, CTA (Chromium Trifluoroacetate) and DPD
lj

' "" (Dlcgclopentadiene Dioxide ).

_i- The suggested mechanism for CTA vulcanization is formation of the
4-

•" chromium salt of the polyTner.

_.. CTA

t [

:' f "_ _:o <_>-.).
... C=O O C=O

._:

!

The suggested DPD cure mechanism depicted shows only the first

step in this process. '

L ,
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J

: Although data from P:ference 66 and others indicate a low compression set

for _--_'_,u_CTA and DPD cures, tater application data indicate very high

velues, comparable to Teflon under the sanae conditions.

CNR is extremely non-flammable even in pure oxygen environments.

/ Experiments comparing CNR and Teflon (by Thiokol) indicated that at

pressures up to 600 psia in pure oxygen Teflon sheet samples could be

ignited, while CNR sheet samples would not ignite or char.

The N20 4 and nitric acid resistance of properly cured CNR are

among its more interesting properties. CTA cures appear to be the most

resistant; however, DPD vulcanizates are resistant for at least 3 mouths

and show much lower stress relaxation than CTA vulcanizates. Other

epoxide cures show relatively poor resistance, degrading significantly

within a few lays. Metal oxide vulcanizates are also generallv inferior

for this purpose. The only materials knowua to have a seriously degrading

effect on the nitrose terpolymer are amines. A prime example is hydrazine,

which degrades the polymer in a matter of hours at elevated temperatures.

Liquid fluorocarbons are frequently solvents "_r CNR gum and can be

• expected to cause a high degree of swell in the vulcauizate. However,

some fluorocarbons cause little change; for exa.-'r'.ple, Freon MF, fre-

quently used as a flushing flui-1 in rocket propellant systemsp causes only

!9 percent volume swell in CNR vulcanizates. The co_nposition and some

mechanical properties or characteristics of CNR (AF-E-110, Resistazine

88) are shown below: (Ref. 56)

Ingredients AF-E- 110

CNR 100 I
Silstone II0 20

CTA 5

Me chanicai P rope rile s

Tensile Strength (psij 1600

Elongation (To) 1 50

: Hardness, Shore A 85,,

; Maximum Ser-ice Temperature in Air, Continuous Service 3;5°F _"

Bin Life (uncured) >45 days

1 ,

m N _
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;. Mechdnical Properties (Continued) AF-E-II0
D

' '_"' ShelfLi_ f_,,_" :. ..- , ..... j > 90 days

N204 VelumeSwell
_ at 70°F 15%

_" at 165°F 45%

.- SafetyCharacteristics Excellent

QualitativeResistanceto:

•. H202 Excellent
_- IRFNA Excellent

Hydrazine Poor

FreonMF Excellent

_3: Freonll3 Excellent

_" Hexane Excellent

Toluene Excellent
<
_- P_troleumHydraulicFluid Excellent

A comparisonof the permeabilityof CNR (AF-E-IIO)with Butyland Teflon

_" FEP is shown in Figure4.3.34.

" Work is presentlyin processby TRW Systems(ContractF33615-71-C-]233)

orientedtowardimprovementof CNR by compoundin_and curingtechniques.

} This is a continuingprogramand only interimdataare availableat this

•_'i time. Variouscuretechniqueshave been investigated,the most successful
• beingan Amide cureand an Estercure.

ii The followingis a comparisonof mechanicalpropertiesobtainedwith

the NT-5 (CTA)cureand theTRW cure.

• MECHANICALPROPERTIESJF CNR

(l.OMole-%) {

Pro__rg__erty NT-5 TRW

MIOG, psi 500 450 '

Tb, psi 975 800

Eb, % 325 300i:

/_, ShoreA Hardness 80 ---

4-14_
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Mechanical Properties of CNR(cont.)

Property NT-5 TRW

Compression Set, % I00 85

{22 hours/160°F)

/ Helium permeability, scc/cm2-hr. 6.0 0.20

" (_P = 15; O.075-inch thick)

N204 Permeability,mg/cm2-hr. 0.23 0.055

(6P = 15; O.075-inch thick)

It is obvious from these data that no major improvements have been made

te date, except in the reduction of the permeability to helium and N204.

The remaining properties are essentially identical.

From these data, it can be concluded that CNR is not a recomended

seal material for Space Shuttle applications. In addition Lo the poor

mechanical properties and in particular essentially I00% compression set

after a relatively short period, availabilitywould be a problem. No ..

source of this material is known with the exception of the quantities TRW

is making for the program mentioned previously.

In summary, there are no known advantages and a number of disadvantages

in the use of CNR m_terial.
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C; IP_ 4.3.7 EthylenePropyleneTerpolymer(EP_)
O

._. StillmanRubberCompanyr_,_,,,_SR _A _A" ......._..... ,_-_v is ar_EPT compound

_C characterizedby high resistanceto degradationby hydrazirJe,and low

• compressionset characteristicsare characteristicof the betterexist-

ing EPT compounds. The propertiesshownbeloware representativeof this
/ r:: material. It is being successfullyused in a numberof flightmonopropel-

_ lantsystems.

Anotherethylenepropylenecompoundcurrentlyin use is a proprietary

"_ compoundof the ParkerSea!Companydesignatedas E515-8. ParkerSeal

. data (Ref.207) statesthat it is suitableovera temperdturerangeof

-65 to +300°Fand for vacuumserviceto 10-7 torr. The materialhardness

is ShoreA 60. Thismaterialhas beensuccessfullyused in hyarazine

Ethylenepropyleneterpolymercompoundshavebeen used successfully

_ in hydrazinebase fuelsystems,as previouslyindicated. There is a

_v degreeof degradationwhich occursin physicalpropertiesthat is pro-
_'

_ gressivebut at a lowerratewith time,afterinitialexposure. Compres-
.- signset also occurswith an increasewith time,resultingin sealing

problemsof pressuredrop variation.

It can be concludedthatEPT compoundsare suitablefor fuel service,

but are not optimum,and if used for extendedservicesuchas Space

Shuttle,would be expectedto causeproblemsin some cases.

An extremelyimportantfactorin the use of EPT compoundsis cor_trol

of mate-ialpurityand exactcompounding.Smallamountsof impurities

will s_riouslydegradecompatibilityas will compoundsusingcarbon

blackas fillercompounds.(Ref.204) _
l
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Ethylene Propylene Terpolymer Properties

Parameter SR 724-90 (Reference 92))

Tensile Strength, 22°C, psi 1700

/ Elongation at Break, 22oc, psi 300

Shore A Hardness, 22oc 90

Tensile Strength After I00 Hours
in 72°C Hydrazine, 22oc, psi 1300

Elongation _L Break, I00 Hours
in 72oC Hvdrazine, 22oc, % 180

Tensile Strength, I00 Hours in
72°C Alcohol , 22oc, psi 1975

Elongation at Break, I00 Hours
in 72oc Alcohol , 22oc, psi 220

Stress at 5% deflection, O.l in./min
First Deflection, psi 325

Hysteresis Loss From 25
Deflections at 5%, % 15.5

Compression Set, 70 Hours at .-
• 72°C, % 22

Properties in Hydrazine

Initial Deflection, Hanging Weight
Test, % 7

' lO0-Hour Creep, Hanging Weight
Test, % 1.5

Permanent Deformation, Hanging
Weight Test, % 3.3

Volume Swell, 24 Hours, 22°C, % 3.0 :
%

Compression Set, 50-hr/72oc +
I15-hr/22oC_ Immediate Value, % 26.8

Compression Set, 50-hr/72°C +
I15-hr/22oc, 24 Hour Rest, % 19.2
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• 4.3.8 Butxl Rubber

ButylRubberhas been usedextensivelyin hydrazinebase fuel

service. There are variouscompounds,each generallyproprietaryto

the manufacturer.No data are presentedheresince it is not a present

candidatefor fuelservicedue to the availabilityof superiormaterials

suchas EPR and EPT.

An exampleof Butyl compoundis StillmanRubberSR 634-70,a '

_ proprietaryButylcompoundof the StillmanRubberDivision,Sargent

._ Industries.Stillmanstatesthat it is suitablefor serviceovera wide

temperaturerangeand also for vacuumapplications,Reference53 reports
a tensilestrengthof 2058 ps; and an elongationof 400 percentfor a

' samplewith a ShoreA hardnessof A7I,

In generalButyl compoundstend to causefueldecompositionand

experiencemechanicalpropertydegradationincludinghigh comp-ession

• set overa periodof time. Reference199 indicatesa high_IH decom-

positionat 275°F in 24 hourswith 20% volumeincreaseand a lO-12Shore

A hardnessreduction. With availablealternateelastomersthereare no
}
: apparentadvantagesin usingButyl for propellentsystemsseals.

t
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Figure 4.3-35. Helium Permeability of CN.R ':
(i_e"e rence 66)
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" j 5.0 MATERIALCOMPARISON

The preceding sections have indicated some properties of available

seal materials, and in most cases an assessment of their applicability

for Space Shuttle. Properties and attributes of these materials vary !'

widely, ant will further vary with specific design applications. This 1!

_ectionpruv_aesa comparisonand assessmentof thesematerialscategor-

:°_das mc_arialsfor oxidizerserviceand materialsfor fuel service.

' "_.providingthesecomparisondata, pointby pointcomparisonis generally

not possiblesincevariousmanufacturersconductdifferenttestsand

reportresultsdifferently.However,an overallcomparisoncan be made

to determinerelativematerialsuitability.

5.1 SealMaterialsfor OxidizerService

The only existingsealmaterialswhich are applicableto oxidizer

> service are AF-E-124D and Teflon. It is considered that of these two

materials, A_-E-124D provides the greatest advantages for Space Shuttle

applications.The advantagesand disadvantagesof thesematerialswill

_ be discussedlaterafter a briefdiscussionexplainingthe exclusionof

othermaterialswhich have beenused in the past, particularlycarboxy-

_ nitrosorubber(CNR).

,

' _ Other sealmaterialswhich have been used includeCNR, KeI-F.Kynar

and Butyl. The reasonfor usingthesematerialsin the past (withthe

exceptionof CNR) has been thatno othermaterialcouldc_me close to

providingthe requiredpropm-tiesat that time.

CNR, althoughdevelopedspecificallyfor N204 service,exhibits
very poormechanicalproperties,the most significantbeingalmost I00%

compressionset, whichresultsin no inherentsealingcapability. Other

factorssuch as low tensilestrengthand a high permeabilityrate are

not as importantbut are negativefeatures. As a structure!material

for seals in N204, thismaterialcannotbe recommended.

5-I
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Kel-F is a good structural material, but is only marginal in _4204 ) ,
.... _'* ...... _ f^r i_ p_ _nH/nr _l_vatpd tpmnprature in N^O isL_

;oor. A_ indicated in the previous section, in N204 for seven days at
room ambient caused the material to change from a hard plastic to a

rubbery consistency. After seven days under the same approximate con-

ditions KeI-F 300 in addition to softening experienced a 72% loss in

strength.

Butyl rubber should not be even considered for N204 service since
it is completely incompatible. The only past applications have used

good design techniques to extremely limit the area of exposure to N204
thereby reducil,g the rate of deterioration (Ref. 2_). This approach

is not necessary or Hesir_ble with present state-of-the art materials.

Although there appear to be some conflicting data related to Kynar

[q204 service, it can be concluded that Kynar is unsuitable for liquid

' r_204 service. At elevated temperatures (+2750F) Kynar is severely
attacked. The degree of attack is lower at room ambient conditions

but attack occurs over longer periods of time causing embrittlement, )

s_rface cracking and discoloration. No vapor exposure data are avail-

able, but extended exposure to N204 vapor would be expected to degrade
Kynar properties at a lower rate a_d without specific supporting test

data, this application would also not be recommended.

5.1.] Teflon and AF-E-124D

Some of the properties of these two materials are compared in

Table 5-I. Since Teflon properties are, to some extent, dependent on

processing, crystallinity, and void content, a range of values exists.

These value_ a_e not design values but typical of the resin properties

and will _,Iso vary with configuration. However, in general, the ambient

te_,_perature tensile strength of AF-E-124D is in the same range as Teflon,

with Teflon capable of 4000 psi, but both TFE and FEP are typically in

ti_e 2000 to 3000 psi range.

. .1..-.., _ _....._
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_. _m_ The elevated temperature properties differ somewhat in that the , _"
tensile strength of AF-E-124D is approximately the same as the yield I-:

+250°F 300°F.
t

strength of Teflon at to Thus, in a tensile application 1

neither should be used at these temperatures,with AF-E-124D experienc-
" i

. ing tensile failure and Teflon yielding and elongating. In compressive i.

applications, both can be used. but a high degree of compression set !I
can occur, close to IOO% in both cases.

t
bf

:_ The tensile strength of Teflon is significantly higher than AF-E-124D i

at elevated temperatures to approximately 500°F, and decreasing rapidly

thereafter. Figure 5.1 snows these approximate relationships. It is

! interesting to note that the Teflon yield strength is always below the
,}

tensile strength of the AF-E-124D. Since the Teflon _ield strength may

be considered the design point for minimum cold flow it can be seen

that the usable tensile properties are roughly equivalent except that

continuous deformation occurs with Teflon and to a much less degree
with AF-E-124D. t

C_ The static and coefficients of friction with [dynamic are similar,

AF-E-124D only slightly higher, an u_usual characteristic for an

elastomer. The basic advantage of AF-_-124D over Teflon is in the area

of compression set and recovery after release from compression. For

example, at equivalent strains of 25%, Teflon experiences a 17% set r

_?"le AF-E-124D has no measurable set when compressed to 25% and

released. The same is _rue for equal stresses. As an example, for a

stress of 2500 psi, a strain of I0% is experienced with Teflon result-

ing in permanent set of 5%, while the same stress in AF-E-124D results

in 45% strain and essentially zero permanent set. While these examples

actually illustrate only the properties of elastomers vs. plastics,

they do show a basic difference of these two materials.

For long term loading, Teflon will approach a I00% set if uncon-

strained while AF-E-124D will recover to varying degrees depending on

initial compression and time.
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!
Propellant compatibility and effects of propellant exposure are a - i)

function ef temperature and time cf exposure. In general, Teflon TFE [

and FEPare considered compatible with N204 for service at ambient |I'
temperatures and up to 160°F. Reference 199 states the following: !!

"After 70 days of immersion (at 75°F, dry N204), a 2 to 3%volume i
increase, a weight gain of 0.5%, a hardness loss of 20%, an 11% increase [

in elongation and a loss in strength of 11.5% occJrred with TFE Teflon. I!

After 20 days, the FEPTeflon showed a volume increase of 1.6%. a i
weight gain of 0.4%, a 38%loss in hardness, an increase in elongation I

; of 2.9%, a loss in strength of 20.5%. For both Teflons, the changes

in physicalpropertiestook placewithin the first 2 days of immersion,

' after that timeall changeswere nearlyzero (thehardnesslossof the (_

• FEP Teflonwas an exceptionwhich was linearwith time)." Both TFE and

FEP Teflonshowedlossesin strengthof about 7% (afterimmersionin

i, dry N204 at a temperatureof 275°F for periodsup to 88 hours)and

changesin elongationup to 50%. It was also notedthat N204washed

, out particlesof Teflonwhich causedthe N204 to turnmilky. This r _,
referencefurtherstatesthatall rubbers(Butyl,EPR and Nitroso)

eitherblistered,ignitedor completelydissolvedunderthose conditions _-_

and Teflondid fare betterthan the other non-metals.

All thisemphasizesthatN204 serviceis extremelysevereand any
polymersubjectedto thisserviceis in a very severeenvironment.

Teflondata fromthis programhas been primarilyrelatedto com-

pressionset characteristicsafter exposureto propellants.After N204
exposureat 200°F for 22 hours,TeflonO-ringsexperienceda set of

9.7% for an initialcompressionof 12% or 86.3%of the initialcompression.

AF-E-124Dunderthe sameexposureconditionsexperienceda 14.7%set

for an initialcompressionof 30% or 52.5%of the initialcompression.

The longtermcompressionset characteristicscannotbe predicted

statisticallywith the limitednumberof data pointsavailable. However

an approximationof the longterm trendmay be obtainedby plottingthe

availabledata and extrapolatingthe elevatedtemperaturedata to a time

)
I
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_- periodbasedon room temperatureexposure. This is shown in Figure5.2.

'_ The Arrheniusrelationshipwas used here to get an approximatetime based

on elevatedtemperature,acceleratedtests. While it is recognizedthat
_ thismethodis nct universallyacceptedand onlyusefulover a limited

_ii. temperaturerangeand is at besta roughapproximation,it is used here

only as a tool,not as an exact ,elationship.The data pointsfor l

month at 160°Fand 22 hoursat 200°Fwere reducedto timeat 75°Fby

using the _pproximaterelationshipthat equivalenttime is decreasedone-

_ halfwith each lO°C (18°F)increasein temperature.The data in Figure

_" 5.3 indicatea relativelyflat slopebetweenthe data points. The

extrapolatedvalue for l month _t 160°Fappearsto indicatethat under

someconditionsthis degreeof compressionset couldoccur in N204 over
a long periodof time. The time extrapolationaccuracyas well as

singlepointdatamust be taken into accountin assessingt=,ispoint.

However,it can be concludedthatsome increasein compressionset will

occur as a functionof time,but at a low rate. Normally,the maximum

set would be consideredto haveoccurredpriorto the g month data

point. Considerablymore data are requiredto
determinethe rate and

maximumamountof compressionset.

Propertiesof AF-E-124Dafter 6 moath exposureto N204 at ambient

room temperatures(approx.70°Fto 75°F) showeda loss in tensils

strengthof ]8%, lossof elongationof 3% and no changein hardness.

These lossesoccurredgraduallyover the 6 month period,the valuesat

3 monthsbeing: Tensileloss- ll%,elongationloss- O, hardnessloss

- 6%. This is comparableto the previousTFE valuesafter60 days of

II.5%;+ll$; -20%. IReference199)

Theseproblemsare significantand while acceptablein past systems

and operatingduration_can presentproblemsof sufficientmagnitudeto

compromisesome longterm oxidizel,systemoperations.While AF-E-124D

has no operatlonalexperience,the basic attributesappearcapableof

resolvingmost of these problemareas.

0

w

1974005081-201



.......... m ii ,

II
!

_IOOM1_lW (_ISV;I'I:I_INOdn "(EIWWI).l._SNOISS3_IdWOD% -,_

5-8

{

._.

1974005081-202



i ...... ._. -" _" J2- - _ "£-.-±r ....

J

I
• _' In summary,the major problemswhich have beenencounteredin the _

use of Teflonsealsare:

o Cold flowresultingin littlesealingcapabilityparticulary- in staticseals

%
o Flakingduringrelativemotion applicationssuchas ball valve ,,

closures,resultingin contaminantsand leakage, l
• II

o Particlesof N20a have beenwashedout of Teflonat elevated i{
temperature, a_potentialsourceof contamination.

_ o In partiallycontaminatedsystems,particlesof contam_Jnant

,_ are embeddedpartiallyin Teflon,causinga leakagepa%h.

_ The longterm strengthcharacteristicsof AF-E-124Din N204, also
cannotbe statisticallyevaluatedwith the limitednumberof datapoints

available. However,a graphicrepresentationof the data as shown in

Figure5.3 providessome indication.The 3 and 6 month data indicatea

tensilestrengthreductionas expected. The 9 month point indicatesa

highdegreeof data scatter. No rationaleexistsfor an increasein

( strengthafter N204exposureand this pointmust be consideredinac-
curatedue to test techniqueor other factors. However,sinceevalu-

ationof the testmethodand data indicateno obviouserror it must be

assumedthatthis point is only slightlyin error. Thus the tensile

strengthat 6 monthsand g monthsare consideredto be approximately

equal. Itwould be expectedthat somedegradationin tensilestrength

with timewould occurbut at a low rate. The extrapolateddata point

for 7 days at 200°F (usingthe Arrheniousrelationship)indicatesa ""

more rapidrate but sincethe ti,,lerelationshipcan be questioned,it

is probablethat thisreflectsthe maximumdegradationover a very

longperiod. As with compressionset,much more longterm effortis

requiredto acquiredata, and permitmore accuratelongterm extra-

polationby suchmeans as the WLF reletionship.

0
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5.2 SealMaterialsfor Fuel Service

For fuel servicea _umberof candidatematerialsare available.

ThesematerialsincludeAF-E-411,AF-E-124D,Teflon,Kel-F,Kynar,

EthylenePropyleneRubberand Butyl Rubber.

Althoughothermaterialsare discussedin Section4.3 they arem

not candidatematerialsfor propellantsystemapplications.BothViton

and Vespelare acceptablematerialsfor pneumaticor hydraulicsystems.

_ Viton is particularlywell suitedfor elevatedtemperatureand very low

compressionset applications.Vespelis characterizedby its toughness

and heatresistance. Both cryogenicapplicationsand elevatedtemperature

. applicationsare suitablefor Vespel.
w

Thereare no conditionsnr applicationswhereVespelo'_Viton

shouldbe consideredfor propellantsystemservice. Table5-2

providesa comparisonof some candidatesealmaterialproperties.

ButylRubberis not includedsincepropertiesand compatibilityvary
r .

( widelywith formulation.However,Butyl exhibitscommonundesirable

characteristicsof hydrazinebasefuel decompositionand degradation

of propertieswith exposureto propellant. These resultin a structur-

ally weakmaterialwith high compressionset,both undesirablein a

sealmaterial.

As shownin Table 5-2,the basicmechanicalpropertiesof each

- materialare satisfactorywith no markeddifferencesother than those

relatedto materialtype, plasticvs. elastomer.

The primaryarea of differenceis the degreeof compatibilitywith

hydrazinebase fuels. The summaryassessmentas discussedbelow is_

,d thatAF-E-41I, AF-E-124Dand Teflonare virtuallyunaffectedby fuel
propellantexposure. EPR, Kynar,Butyland Kel-F are affectedto a

much largerdegreewith a wide variationir compatibilit_with EPR

beingone of the more compatiblein this gruupand Butyland Kel-F

being the lesscompdtible.

e
O
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In summary, suitable materials for use in hydrazine base propel- '_

,. lantsare AF-E-411,AF-E._I24Dand TeflonTFE in thatorder. EPR,

pruperlycomponded,is usablebut not recommendedbecauReof poorer
6"

overallperformance.Materialswhich are rot consideredfor use and

thereforenot recommendedare Kynar,Butyland Kel-F.

Butylrubberstendto decompose,._',J_.azinepropellant,causing

increasedsystempressureswhere significantareasof Butylare in

contactwith t,_epropell_ntas in expulsionbladderapplications.The

Butyl rubbershow performedacceptablyin some hydrazinesystemseven

with this longterm tenaencyto breakdown. Reference199 indicate_-a

3 rating(doubtfulcompatibility)for Butyl rubbersin general.

/ Ethylenepropylenerubbersare, in general,greatlyimprovedover

; most Butylrubbers. Althoughtheydo evidencesomepressurerise in

_ a closedcontainerin hydrazine,the degreeof disassociationof hydra-

__ zine is reduced, and mechanical property retention is better.

; The mechanicalpropertiesof EPR (particularlyStillmanRubber

_ "_ CompoundSR 724-90)comparefavorablywith AF-E-411intially,Although

: _ the EPR propertiesare sligF.tlylower.

?,

The differencein materialsis demonstratedafter exposureto

i. hydrazine.After I00 hourexposureat room temperatureto hydrazine
i the tensilestrengthof EPR is reduced24% and elongationat break is

_ reduced27%. AF-E-411 under the sameconditionsexhibitsan increasein tensilestrengthof If% with a 10% reductionin elongation.

i A goodmeasureof materialcompatibilityis the hydrazinedecom-

i positionratementionedearlier:where Butyl exhibits0.I ps_ per day.
EPR exhibits.0038psi per day, (Ref.199). The compatibilityof EPR

dependssignificantlyon the compoundingvariationsused,with carbon

, i_ blackcompoundshavinga significantlyhigherrateof fuel decom-

positionthanothers.

Kynar is affectedto varyingdegreesdependenton exposure. Because

of a tendencytowarddegradationover the long term,when exposedto{ '
hydrazinebase fuels,littleapplicationhas beenattempteddue to the

! 5-13
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availability of other materials such as Teflon. As a hard plas_l_

it exhibits similar seal properties to a soft metal and can be replaced

by ur_t. Fur a_-eas _-equi,-ing av,'^$ œ�J_'_,rn_l_EDDy......._ ............_,n _ h_tpr _Plp_tinn

in the past. Kynar becomes embrittled and discolored after hydrazit_e

exposure (Ref. 167), and a reduction ir tensile strength e_c.ars (approx.

19% in hydrazine and 35% in UDMH[Ref. I03]) after 30 day _xposure at

122_:F. These effects combined with lack of real need for _nis type of

material result in it not being recommended for use or further investi-

gation. While vapor exposure data are lacking, similar effects would

be anticipated depend;ng on concentration of vapor and exposu-e period.

Conflicting data on Kel-F exists but the data indicating a relatively

high degree of incompatibility with hydrazine base propellants must

exclude this material from consideration when compared to available

alternate materials. The prime reason for consideration of Kel-F is its

similarity to Teflon. It is made from the same molecule using a chloride

rather than fluorine atom, and as such the compatibility would be

expected to appruach Teflon. Kel-F shows poor compatibility with MMHat

_ temperatures up to 160°F for periods up to 4 weeks (Ref. 199). Gther )
.; data from the same source indicates no excessive MMHdecomposition at

I_
room temperature for up to 3 months, at +158°F KeI-F did have an exces-

I

sive decomposition rate.
i

, 5.2.1 AF-E-411, AF-E-124D & Teflon

1 i As indicated earlier, all three materials exhibit a high degree of

compatibilitywith hydrazine base propellants. The basic initial

difference is in the seals provided. Teflon exhibits the typical

plastic sealing characteristicsand disadvantages,with the problem

areas of cold flow, flaking, and relatively low contamination telerance.

Since the fuel seal problem is much less severe than with N204, the
inert nature of Teflon is less advantageous. For these reasons, Teflon

is not recommended as a prime candidate for fuel system seals.

The comparison between AF- E-411 and AF-E-124D can be based on

differences in goals for developing these materials and performance.

AF-E-411 was developed specificallyas a hydrazine base propellant

system seal material, while AF-E-124D was developed specifically for )
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N204 systems. The performance of both materials is similar with the , i_,exception of compression set. AF-E-411 exhibits lower compression set i

characteristics both in air and propellant and those characteristics i

recommend it as an optimum material. The only justification for use

of AF-E-124D in a fuel system would be the need for identical materials

in both oxidizer and fuel systems. Since this is a logistics/manufact-

uring problem, other selection criteria would be required. The long

term characteristics of AF-E-411 (and AF-E-411A) are very good with

little degradation occurring as a result of propellant exposure. TiJere

, are variations in compression set and strength characteristics dependent

on the propellant however. In Figure 5.4 the tensile strengt,1 retention
r

as a function of exposure time tn 5C/50 propellant is shown. Up to

II months, this i_ essentially a straight line at over 100% which is

100% within experimental error. The extrapolated time for 7 days at

200°F indicates 100% retention for the long term. This is indicative of

_._ the stability of the material in 50/50. Compression set is also a

-# constant over the long term as seen from Table 4.2-18. The maximum

._. compression set in 50/50 is approximately 35%, up to 9 months at 75°F.

- This stability is also characteristic of AF-E-411A.

_z As discussed earlier, these characteristicsrecommend AF-E-411 as

an optimum seal material for hydrazine base propellant systems.

, 5.3 Fabrication and Availabilit_ of AF-E-124D and AF-E-411 -

• ?

These elastomers are typical elastomers with respect to fabrication

wit|,the exception that some of the improved properties result in

characteristicswhich require slightly different fabrication techniques.

5.3.1 AF-E-411

AF-E-411 can be fabricated using conlnon elastomer fabrication

methods. The most commonmethod is to mold to the final shape. For

most designs this is relatively simple since shrinkage characteristics

are well kpown. For complex shapes more care is required and may

require a few iterations, particularly if very close final tolerances

are requi red.f
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Other techniques using molded sheet stock may be used such as

machining af_dg_'indingsimple m_¢_._finnR._,,,._..........The onlv.oossible dif-

ference is more difficulty in grinding due to the high tear strength.

Use of high speed, sharp grinding wheels will permit grinding a_ter some

technique development. Care must be taken not to use coolants when

machining or grinding, or if coolants must be used to recognize potential E

incompatibilityand dimensonal change due to swell.

There is presently only one source of AF-E-411, which is TRW Systems.

. However, facilities there are sufficient to provide any reasonable

quantity and to provide molded p_rts. Should there be a requirement for

_ quantities or sizes beyond TRW capability, the Air Force and TRW would

work with a supplier to establish this capability.

_" 5.3.2 AF-E-124D

_ AF-E-124D also can be fabricated by conventional methods after t

techniques are established. The molded part can be worked in the same L
,, _

_ manner as AF-E-411. Molding of AF-E-124D is considerably more difficult
than other elastomers from a number of viewpoints. In order to develop

i the characteristic of characterized in this
properties AF-E-124_ as

report and shown in the specification (Appendix E)_extreme care and
precision is required during the extended cure cycle. Any significant

variation, can result in materials which will not meet the specification

requirements. When proper care and controls are used, however, consis-

tent quality molded parts are obtained.

The other molding problem area results from a high (_ 12%) non-

uniform shrinkage characteristic. This complicates mold design and

usually requires Iterations to obtain parts with correct dimensions and

tolerances. Once the mol_ is designed correctly, uniform high quality

parts are obtained. Some tiiicksections may have distortion due to the

high shrinkage characteristic, requiring some design care.

The availability of AF-E-124D material is somewhat more limited

than AF-E-411 material since the base raw stock is manufactured in

batch lots. This base polymer is supplied to TRW Systems by
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E. I. Du Pont de Nemours & Co., the manufacturer. The material is

available in any reasonable quantities within reasonable periods of time. )_.

Should the demand significantly increase, it is expected that the source i

of supply would increase, and TRW would make provisions to increase the !
supply of molded parts or assist another source in satisfying the need.

.)
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_. 6.0 SEAL DESIGNPROCEDURE

_' This sectionis designedto providebasicand appliedsealdesign

_ informationresultingin betterutilizationof availabledata and in-
i

formation.

_ InTables6-I through6-5 arelistedsomefactorsaffectingnon-

!i metallicsealdurabilityand an assessmentof the most criticalpara-

metersfor variousnon-metallicseal types. In evaluatinga sealdesignt

and determiningthe areasof maximumemphasisthesefactorsshouldbe

I utilizedand given consideration.Sinceeachs_al designand application

will differ,thesegeneralassessmentswill not alwaysapplybut should

be given initialconsideration.

Beforebeginningthe discussionof specificsealdesigntechniques

and procedures,a generaldiscussionon polymericmaterialproperties

, and behavioris presented. Realizingthata largepercentageof existing

C_ designsinvolveeitherhardplasticor metal-to-metalclosures,it is

consideredimportantto orientthe designertowardthe differences

betweennon-polymericmaterialsand polymers,particularlyelastomers.

6.1 PoljlmericMaterialPropertiesand Behavior

The designerattemptingto createor analyzesealdesignsmust be

familiarboth with the generalizedand specificpropertiesand behavior

of the materialsfromwhlch the seals are to be made. Most designers

are far more familiarwith non-polymericmaterialsthanwith polymers

thereforea reviewof thefundamentalsof polymerpropertiesand behavior

is presentedhereas a convenienceto the usersof the seal designpro-

cedurewhich follows.

(-
6-I



6-2

1974005081-215





....... . .- • Ir,ri_ _..i._,:_

1974005081-217



•: )

1974005081-218



_o _ ---"?

,_' '_.: .... _ o _-_ u__.

:=o o_, _ _ _ _. Z _ _ _ '4-

1 6-6

t

1974005081-219



1974005081-220



,

Factors Determining Polymeric Properties

n^l,,m_ m_t_rial properties are largely determined by four factors:

l) molecular weight

2) structural organization

3) compounding

4) state

Molecular weight is usually stated as an average and perhaps would

be more meaningfully expressed as a molecular weight distribution or

spectrum. Pure polymeric substance tends to be comprised of a statistical

distribution of molecular weights because neither chemically nor in the

processing is there any absolute control mechanism to govern the number of

monomer units in a polymeric molecule (Reference 38). Hence, most pro-

duction processes result in mixtures of molecular weights. Fractionation

may be used as a post-polymerizationstep in narrowing the range of mole-

cular weights in a batch. Taking as an Illustrativeexample tetrafluor-

ethylene (Teflon), at room temperature the low molecular weight fraction 1

is oily, the intermediateweight fraction is waxy, and the high weight

fraction is solid. By mixing these in different propo_'tions,materials

of different properties are obtained.

Polymeric materials are often categorized according to structural

organ_-_tion in order to generalize about their mechanical properties.

If poly _rs are v_sualized as long chains of atoms then at least three

chardcteristic arrangements may be recognized: (1) amorphous-random

orientation of the chains, (2) crosslinked - with lateral chain-to-chain

connections, and (3) crystalline - highly ordered arrangement of the

chains.

Using again the example of Teflon, Du Pont scates (Reference 29)

that the TFE resin they provide for extrusion, moldings, and castings of

film yields a crystaliirity ranging from 50 to 70 percent when the

processor follows their directions.

Figure 6.1 show_ hcw typical property curves would compare for a

polymer which can exist in varying deyrees of molecular orderliness

(Reference 38). )
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Figure 6.1. Variation in Property-Temperature
Curve with Degree of Molecular

:_ Orderliness

• i Voids are those volumes within the bulk of the finished part which
are not filled with polymer. Void content is ;ontrolledduring process-

ing. Specific gravity, strength, permeability, and dielectric strength

•' _ are some of the propertieswhich change with void content in a pure
! po!ymeric substance.

A given body of material often contains b(th amorphous and crystal-

_ line regions; the extent of these regions can change both due to thermal

history and to load history. Crosslinking is a chemical process so the

R,d.Yimumamount of crosslinking will depend on the presence of suitable

activators (sulfur in many rubber systems) or active side groups along

each chain which can join chains together. Crosslinking can be de-

creased either chemically or thermally.

Within amorphous regions the chains are relatively free to move

relative to each other, hence at a given temperature the bulk behavior

of the material is more like a fluid. Properties tend to be isotropic

(equal-valuedin all directions).
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Development of crosslinks tend to make the material stronger, more

elastic, and stiffer partially because energy can be stored in the cross-

links. Very often crosslinked materials are more susceptlb|e to chemical

attack because the crosslink bonds ar_ more easily broken by oxidizers or

reducing agents than are the bonds in the chains which constitute the only

structure in amorphous material. I
I'
)

Working and temperature cycling may cause amorphous regions to become

crystalline. The percentage fraction (by mass) of the total bulk which is

ordered in the crystalline state is labelled the "crystallinity" of the

polymer. Highly crystalline materials are rigid, may be brittle, and are

sometimes non-isotropic (properties vary with direction). Crystalline

regions suddenly revert to the amorphous state when the temperature reaches

the melti,g temperature Tm; under certain conditions a discontinuity occurs

in the volume change at Tm (Reference 38).

Controlling crystallinity is one means available to the processor for

controlling properties without changing the chemical constituency of the

product.

)
Polymeric materials may be used as either relatively pure substances

or as polymeric compounds. Pure substances are comprised of only one

molecular composition; for seals these are typified by Teflon (tetrafluoro-

i ethylene), Kel-F, polyvinyls, polyethylenes, etc. Pure substances seldom

• have all of the optimum mechanical property values desired for seals, for

which reason they are often mixed and processed with other ingredients to

produce a polymeric compound. Compounds, as mentioned herein, are

mechanical mixtures of ingredients which develop some cohesiveness through

crossllnking during a curing process.

Polymeric compounds generally consist of a base polymer, activators,

fillers, wetting agents, plasticizers, anti-oxidants, etc. The base polymer

chains are crosslinked together under the influence of the activators which

) either furnish the connecting link to which the side groups become attached
(e.g., sulfur in vulcanized rubber), or remove terminal atoms or groups from

the side groups to ready a site for crosslinking or behave like catalysts.

)
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-. Fillers are either inactive except for some surface wetting or attached by i-

crosslinks to the polymer; their function is to occupy space and provide I

strength, abrasion resistance or hardness (Reference 22). _etting agents

cause the fillers to be wetted so they can be firmly anchored in place

(i.e., resist separation and washing). Plasticizers are effectively mole-

cular lubricants which reduce internal friction, making the compound more

flexible and capable of flow (during forming) and less prone to heating

when flexed. Anti-oxidants give the compound resistance to oxidation.

Properties of compounds are very dependent upon the ingredients and

processing. Degree of crosslinking, fraction as filler, size and shape

of filler particles and fraction as plasticizer are especially important

in determining mechanical properties. After curing, compounds are still

susceptible to changes in properties if the chemica'I/thermdlenvironment

is not compatible with maintenance of the compound's integrity. Cross°

linking can be increased (which hardens the material), or crosslinks can

:_ be washed out (reducing its strength, hardness, and abrasion resistance).

,_ And plasticizers, which are especially mobile, can be leached out or bloom

(" (causing the material to beco_ stiff apd perhaps cracked).

i The properties of polymeric materials vary considerably with state.

Temperature is the state parameter which is most significant. One source

i i states that " glass transition temperature is perhaps the most

i_ i_,portantcharacteristic parameter of an amorphous polymer" (Reference 38).

i_ Tg_ The glass transition temperature, , i_.,a specific temperature (or narrow

temperature band) at which most properties change radically, and below which

I the properties are "glassy". In qualitative terms, over a wide temperature
range, amorphous polymers display a variety of characteristic tendencies

ranging from "glassy" to liquid. Figure 6.2 illustrates these qualitative

properties.

"i

i
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Figure 6.2. Variation "n Amorphous Polymer
Characteristics i

i

i The mechanical properties of polymers are generally functions of temper-

ature and time. A widely-accepted relation for the time-temperaturedependence

!, of amorphous rubbery materials at temperatures above the glass transition

I temperature is that of Williams-Landel-Ferry (WLF) (Reference 21):
b

t C_ (T-To)
log aT = "

C_ + T-T o where: a T = magnitude of shift
along log time scale

o
CI = constant at reference
I

temperature

T = temperature For t_hich
property is being cal-
culated

To = reference temperature

,o = constant at reference

_2 temperature

.)
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i This equatienmay be usedwith referenceto the glass transitiontempera- l
_ ture in order to make use of the fact that the constantsCl and C2 are

; nearly"universal"at that temperature:

17.44 (T - Tg)
" log aT = - v;hereA a = differencein the coef- I
-_ 0.025 A_ + T-Tg ficientof thermalex- I

• pansion,aboveand belowT
!

': (NOTE:51.6may be g
:_ substitutedwithoutlarge

error for 0.025Aa)
i i

ThisWLF relationis usedto construct"mastercurves"fromempirical
'i

: datagivingpropertiesas time/temperaturedependentfunctionsthroughthe

; , processof superposition.To do this, the timecoordinate(abscissa)is

i set up as log timeand the temperaturedependenceof the data is factored

,) out by shiftingthe plotalongthe abscissa. Figure6.3 representsthe
| basic processbut the originalarticleshouldbe consulted(Reference39)

I I beforethisis attempted. Once thesemastercurvesare constructedthe

I propertycan be predictedas a functionof timeand temperatureby the

") reverseprocess. The WLF equationapparentlyholdsover the range
Tg + 216"F.' ) <T <Tg

//

i; T =T1

i = T2

I (2)
>-

i/': f
,- T3 _
¢,j I_

o o
= T4 e_

T =T5

i

LOG TIME LOG (AT X TIME)

A. DIRECTDATA PLOT B. MASTER CURVE

(.-_ Figure6.3. Constructionof "MasterCurves" y)
•,'(
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Integrity of the Polymeric Material

Inertness of polymeric materials to the fluids they will come in ) _"!
contact with is essential for predictable mechanical properties and dur-

abi I icy.

In practice thermo-chemical degradation is often classified in terms il

describing the changes in the physical appearance of the polymer. Some _j

; polymers exhibit no thermal degradation except molecular weight changes

("unzipping"of the chai-_ and/or sublimation; Teflon is an example of

i this type of material. Other polymers tend to be made brittle due to loss

_ of plasticizer, to incur cracking and finally to melt. Highly crosslinked

! polymers may soften at high temperatures if the bonds in the links are

) thermally-degradable.

More often than not a reactive chem<cal species is in contact with

the polymer which is then subject to =he_..calattack or combined thermal

plus chemical degradatien. Chemical attack is usually focussed on the

crosslinks either breaking them or increaRi,.g+ _ir number ("over-curing").

" Drying or increased tackiness i- commonly seen as the first symptoms of

3 '' chemical attack. Environmental stress cracking may occur. Severe degra-

dation causes the polymer to become either hard or soft. Hardness is most

' often a sign of over-cure (too many crosslinks_ Breaking of crosslinks

may cause the polymer to revert to gum or a crumbly mass with little

i cohesion. Softening sometimes is due to breaking of the polymer chain.

I The propensity for one surface to stick adhesively to another is

termed "Tack". Methods of measuring Tack are outlined in Reference 48.

Tack may be a normal property of the surface of a material, or it may occur

or be increased due either to a reaction with the fluid or the adsorption

of a layer of foreign substance on its surface. Tack often increases with

temperature increase. Tack is generally an undesirable characteristic in

seals.

Since the leakage rate in the parametric model is directly propor-

tional to hardness, it is essential that the seal not become too much harder

than when installed. (In this context the meaning is change in hardness

)
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at a giventemperature,net changedue to reductionin temperature.)

Polymerhardnessis a chemically-relatedpropertyin most cases,but there
I

are certainexceptionssuchas when workingor thermalcyclingcauses

crystallinityto increase. Strainhardeningis a commonoccurrence.

Increasesin molecularweightcan occurunder the rightcircumstances

such as irradiation,chemicalenvironment,etc. Crosslinkingis another

frequently-occurringcauseof hardening;it is most likelyto happenin

compounds,highlypermeablematerials,and molecularstructureswith

residualside groupswhich are not fullyreacted. Lossof plasticizer

also leads to hardening,and sincemost plasticizersare merelydissolved

in the structureratherthanbeing chemically-attached,they are very

prone to bloomingand being leachedor washedout.

Becauseso many mechanismscausehardening,and the chemistryis

infinitelyvaried,thereare no generalrelationsfor predictionof

hardening(Ref.21).

Reductionin hardness(softening)is not so clearlydetrimentalas

increasein hardness,neverthelessthere usuallyis a practicalminimum.

('_ Thisminimumhardnessis a necessarypropertylimitmainlybecause

extrusionand wearmust be avoided. For staticsealapplicationswhere

there is 100%materialentrapment,leak-tightnesshas beenmaintained
m

even afterseals had lostall cohesionor revertedto gum. Howeverthese
i
I extremecasesof hardnesslossare of littlemore than curiosityvalue in

assessinga practicalminimumhardnessfor generalapplication.

Softeningmay be causedby most of the samemechanismsthatcause

hardening,exceptthe effectis reversed. Thereare Fewwork-softening

I polymers. Molecularweightdecreases(scissions)can be causedby ir-

I radiation,chemicalattackon the bonds in the molecularchain,and by

thermaldecomposition/depolymerization.Most redoxreactionsattack

bondsin the crosslinks;in the extremecase so many may be brokentha_

thematerialrevertsback to uncuredstate (basepolymerplus compounding

ingredients).Solventscause softeningif they are ableto swellthe

material. Plasticizersin excesstend to bloom but the retainedfraction

will softenthe materialto a certainextent. Washingor leachingout of

fillersusuallywill causesoftening.
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Inertnesswith respectto unstablepropellantsmay not be limitedto

redox interactionsbut _n certaincircumstancesmay includecatalytic )

activity. An exampleis Lhe _-_ -"

carbonblack,a commonfi]lerin rubber. To a limiteddegreethe inert-

nessof a material/fluidcombinationcan be predictedfrom chemical

activationenergiesbut generallyinertnessis determinedby tests.

Occasionallythere is a reactionat the interfacebetweenthe seal

and the adjacentparts. These reactionsusuallyresultfrom releaseof

a constituentof the polymeror a fluidbeingdesorbedfrom the polymer.

Apparentlycatalysiscan play a role in some of these reactions. As
I

:_ example,rubberparts sometimescause localizedattackwhen heldagainst

aluminum.

Changein size (aswell as changein properties)can be causedby

lossof material. Changein sizedue to lossof mass almostcertainly

i will leadto lossof sealingstress(andhence leadto increasedleakage)

, unlessthe seal is springloaded. Mass lossat the surfacemay also

: roughenthe surface

i Exceptfor wear, in most casesthe loss is limitedto fillers,
I plasticizers,residualactivators,wettingagents,etc.,which can be

washedor leachedout of a compounddue to the lackof crosslinkingwith

these ingredients.Bloomingoccursdue to simplemigrationof free

materialfrom the interiorto the surfaceof the part.

To avoid changesin propertiesor size, and to avoidintroduction

of contaminationinto the fluid system,the resistanceof sealmaterials

to thismigrationis an importantproperty. Migrationmechanismsmay be

dividedinto two categories,thosewhich are self-activatingand those

whichare causedby externalagents. In the formercategoryare such

actionsas outgassingand evaporation.In the latter,wear, washingand

leaching.

Outgassingnormallyis the resultof trappedor generatedgas being

releasedthroughthe combinedmechanismsof diffusionand desorption.

Vaporizationof constituentswithinthe polymer,especiallyin compounds,

is commonwhere eitherlow pressuresor high temperaturesare imposedon

the seal. Exposureto veryhigh vacuum,as in space,will cause the )
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corstituentswith any appreciablevapor pressureto boil-off. Light ends

of plasticizers,mold releaseagents,wettingagentsand cleaningsolvents

are likelyvapors. Trappedai_ may be released. Generatedgaseswhich
f:are the productsof redox reactionsmay also be released.

The relativeimmunityof a polymericmaterialto rougheningand I
abrasivewear of its surfaceis calledits "abrasionresistance"(Ref.47).

Fillersfor elastomersare oftenchose for theirenhar,cementof abrasion

resistance.Abrasionresistanceis determinedby scratchor grindingtests

inwhich the weightor volumeof materialremovedis the principJemeasur-

ab|e. Highabrasionresistanceis desirablein seals.

Washingand leachingresultfrom solublesubstancesbeingcarried

from the polymerin solution. Washingremovesmaterialsnearthe surface,

leachingtransportsthe dissolvedsubstancefromwithinthe bulk of the

• polymericpart.

i ThermalPropertiesEspeciallyPertinentin SealDesign

The coefficientof thermalexpansionis very largefor polymers

comparedto most non-polymericstructuralmaterials. Hence thermal
!

i stressesand misalignmentsare likelyto occur unlessthe sealdesigns

i providecompensatingfeatures.

'I Thermalconductivityis an importantfactorin determiningthe sus-

ceptibilityof a body of polymericmaterialto heatbuild-updegradation,

I thermalshock,thermalratcheting,and thermalfatigue. It is neitheran

easy parameterto measureaccureLtelynor one for which there is any simple

theoreticalexpressionusefulin predictingits value in polymers.

The rangeof thermalconductivityvaluesmeasuredat rc_mtemperature

is aboutlO to 1 for the typesof polymersused in seals. For a given

material,the thermalconductivityvaluemay varymore than lO to l over

the temperaturerange of LH2 boilingpoint _o +400°F. Hence,betweentwo
materialsat the oppositetemperatureextremestheremay be a difference

of lO0 to l or more in the thermalconductivity.
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) 'MechanicalPropertiesand Behavior I

The ':Hardness" of a material is n_+ a ......,,niq,,ely valued proDertv.. but

instead depends on the method of measurement. Most of the Hardness measure-

ment methods consist of determing how deep an indentation ts produced when

a specially-shaped indentor is pressed under a fixed load (force) into the

surface being tested. The Shore Durometer is a special indenter with a

built-in readout dial which is widely used for gauging the Hardness of

polymers. Shore A Durometer is the commonlyused Hardness scale for soft

rubbers and plastics. Harder polymers are tested on the Shore D Durometer

scale. Ver hard polymers may be rated on the Rockwell R scale. Universal

correi_ions of hardness with other properties do not se:_ to exist.

Poisson's Ratio, _, is most simply defined as the ratio of the lateral

strain to the strain along the load axis; the sign of the lateral strain is

the opposite from that of the axial strain (Ref. 40). This definition

appliesonly for strainsup to the proportionallimit.

Poisson'sRatiovariesfrom0.05 or less (Beryllium)to 0.5 in soft

rubber. Mostmetalshave a Poisson's_atio between0.25 and 0.35. Re- )
ference43 lists somecalculatedvaluesfor Teflonas 0.46 for TFE and

0.48for FEP. Reference44 suggeststhat in the step-wisesolutionof

certainplasticstrainproblems,two differentPoisson'sRatiosmight be

usedif _ is lessthan0.5 - one for the elasticcomponentand one for the

plasticstrain.

An interestingpoint is th(tfor a valueof about0.5, a material

doesnot changevolumeunder uniaxialload,whereasfor all othervalues

of _ it does. Materialslikerubberwith _ : 0.5 behavelikea fluidin

thatpressuresexertedin one directionare transmittedequallyin all

directions.This is importantin sealdesignsinceit means that pressure

loadingisvery effectivein generatingsealingstress(Ref.29).

BulkCompressibility(or BulkModulusor Modulusof Compressibility)

must be taken intoaccountwhen calculatingtotalstrainsin thinsections

if the stresslevel is a significantfractionof the Bulk Compressibility.

)
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BulkCompressibility,k, is definedas the ratioof the uniformtriaxial

lhj_ro_.._"*_a+'_Icj__+_o_ ,n the volumetricstrain For most polymeric

materialswhichare essentiallyisotropic(Ref.18) k is directlypro-

portionalto the modulusof elasticity.

In elastomericseal designwork the most valuablemechanicalproper-

tiesdata are curvesof stressversusstrainas a functionof strainrate,

timeunder load,and temperature.These curvesare especiallyvaluable

sincepolymersexhibitstrongtendenciesto undergocreep,stressre-

laxation, and set.

• Many elastomersexhibitlittledirectproportionalitybetweenstress
*

and strainso the modulusof elasticitymust be identifiedin termsof the

pointalongthe curvewhere it was calculated. Strainper unit lengthis
!

usuallycalledElongationin elastomers,so the lO0 PercentModulusis

' the stressat lO0 percentelongationand the 200 PercentModulusis the!

' ! stressat 200 percentelongation.

_ Polymericpartssubjectto fast loadingand unloadingcyclesmay

i_ -_ respondwith an apparentstiffness,or lag in strainresponseto stress

(Ref.13). This is due to the factthat onlya portionof the energyis

storedin the part as elasticdeformationand the remainderis expended

in overcomingviscousresistance;the latterenergycomponentgenerates

heat. Takingthe simplestmodel,considera viscoelasticpart subject

to a sinusoidalloading. Stresseswithinthe partwill be the resultant

of two components,an elasticcomponentwhich is in phasewith the strain,{

and an viscouscomponebltwhich leadsthe elasticcomponentby 90 degrees.

The viscouscomponentmust be 90 degreesin advanceof the elasticcom-

ponentbecausethe viscousresistanceis proportionalto the rate of

strain,not to the instantaneousmagnitudeof strain. It can be shown

thatthe resultantof the two stresscomponents(or the total applied

load)is a sinusoidalstresswhich leadsthe elasticcomponent(orstrain)

by the phase angle8,

l amplitudeof viscousstress
where:6 = arctangent amplitudeof elasticstress

Tangent6 is calledthe loss factor.

6-19

)c

1974005081-232



q

To characterizeviscoelasticbehavior,a parameterhas beendefined

which is calledthe "DynamicModulus",ED, which is calculatedfrom the
sinusoidalstressesand strains:

ED e °m (_)elastic+ (°)viscous
Cm _m

Becausethe elasticcomponentis recoverable,the modulusrepresenting

that portionof the stressis calledthe "StorageModulus",where:

E _ melastic
S

_m

Dynamicresponseof viscoelasticmaterialsis discussedat lengthin

References12 and 36.

Memberswhose functionis (at leastin part)to absorbenergyby

deformationmust na_ea suitablyhigh "specificdampin_energy". Materials

, with highdampingdissipateenergyas heatdue to theirinternalfriction

(hysteresis).Damping,DH, an empiricallymeasurcdquantityis relatedto

stressand temperatureas (Reference14):
/

DH : BeqTon Where: B = constant,dependson material
e = 2.718

q = exponent,dependson material

T = temperature

o = completely-reversedstressamplitude

n = exponent,dependson material

Strainsin stressedparts Lendto be diminishedwhen the stresslevel

is decreased. Perfectlyelasticpartswould have uniquevalueof strain "--

for every valueof stress(i.e.,_ll strainenergywould be instantlyre-

coverable). Realparts,however,undergointernalenergydissipationpro-

cesseswhich take timeand are functionsof temperatureand the strain

history. Certainmetals,ceramics,and rubbersmay exhibi_veryfdst re-

covery. "Resiliency"is generallytaken to mean the fractionof the strain

i energywhich can be immediatelyrecovered;the re-boundheightof a rubber

)
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ball dropped on a hard surface, for example. "Resilience" is a term used

zo describe the amount of strain energy stored in tile elastic range.

Resilience is important in the design of valve seat seals because it

determines the energy contributed by the seal to "bounce-back" upon _

rapid closure, and to opening the valve. Resilience is proportional to

the elastic strain energy per unit volume up to the proportional limit

(Reference 14), or,

2

Up __ , where: Up : Modulus of Resilience, in-Lb/in 3

_p = Stress at proportional limit

E = Young's Modulus

A member strained into the plastic region releeses more energy when

unloaded than if it is taken onlv to the proportional limit; this action

_ is called hyperelastic resilience, U.

Characteristic properties of a material measured _t the point of

f_ilure are strongly influenced by the temperature, strain rate, and

structural state• Generally materials become stronger (rupture at higher

stresses) and more brittle as the temperature decreases but the relation

is not linear. Also, the measured strength increases and the elongation

', decreases For very rapid strain rates. Materials which are crystalline
i

;_ tend to be stronger but elongate less than those which are amorphous.

_ A fully brittle material absorbs all impact energy in elastic defor-

Ii mation up to the point where it shatters. A fully plastic material, on
the other hand, dissipates all impact energy in plastic deformation up

to the point where rupture occurs. (A single material can display both

of these characteristic responses, although not necessarily having the

same areas under the stress-strain curves, if the rate of loading is

varied; an example is "silly putty" which will shatter under impact but

plastically flow under a steady load.) Most polymeric materials respond

with some elastic and some plastic strain when impacted, that is, they

are neither fully brittle nor fully plastic.
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Also called "Tear Resistance", the Tear Strength is the load per ,

inch of thickness required to propagate a cut or notch. Tear Strength

is usually specified with relation to a specific specimen shape (e.g.,

nicked crescent). High Tear Strength is very desirable _ most sctl

configurations.

The friction properties of polymers are functions of load, rubbing

speed, temperature, and surface conditions. Most of the reported friction

coefficients of seal materials are for "unlubricated" surfaces but that

condition is not precisely defined in most cases. Generally it means that

no substance was deliberately applied to the surface with the intention of

lubricating it. However, tests have shown that the friction coefficients

of certain material combinations, especially metal, are much higher than

normal if the unoxidized substrate is exposed and the rubbing occurs in

a vacuum, which indicates that the normally occurring surface films and

fluid media act as lubricants. Besides oxidation layers most materials

have adhering films of various substances such as mold release agents

and adsorbed gases. Usual]y the natural lubricating properties of "dirty"

surfaces are insufficient to achieve really low coefficients of friction,

hence the common use of well-adhering, high-lubricity substances such as

hydrocarbons and molybdenum disulfide on rubbing surfaces. The_e lubri-

cants often are not compatible with rocket propellants or are less t_a,:

adequately permanent (most are susceptible to being washed away o_

evaporated).

A few materials are sufficently se_f-lubricating to serve as good

bearing materials. Among these are Teflon and _ome of the polyimides.

Such polymers sacrifice a layer of material from their rubbed surface

to form a lubrication f_Im on the opposing surface. As long as this film

remains intact the coefficient of friction stays very low even in a

vacuum. In these casLs there usually is an optimum range of surface

finishes for the harder of the two rubbing surfaces which is just rough

enough to abrade away a sufficient amuunt of the softer material to form

a good lubrication film; surfaces which are substantially smoother than

the optimum fail to generate a good lubrication film so the zoefficient

of frictio_ is actually higher than for the optimumally-reugh surface. )
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A varietyof fluidscan act as lubricantsincludingsome of the

rocketr,opellants.This has resultedin tn_ commonobservationthat

when valvesare actuated_'hilewet with a lubricatingfluidthey require

lessforce_nd showreducedwear comparedto when they are actuatedwhile

dry. The differencesin "wet"versus"dry"wear rateshas beenso great

in _o_ecasesth.tvalve cyclelife is often specifiedwith z quotaof

dry cycles_hichis far less thanthe allowednumberof wet cycles.

]

6.2 SealDesignProcedure

This sectionoutlinesa seal designprocedurewhich was developed

witi,the followingphilosophicalpointsin mind:

I. Ew._tuallyit shouldbe possibleto ana!yticallydesignseals

when all the necessaryrelationshave beendevelopedand all

the necessaryinputd_ta are available.

2. In orderto identifyall the neededrelationsand data, it is

i necessaryto definethe overallcalculatingframework;only
then is the logicapparentand the presentlylackingdata pin-

.T pointed.

i 3. Untilall relationsand databecomeavailable,use of the
!

presentlyworkablepartsof the procedureminimizesthe
t

' amountof "cut-and-try"effortneededto developa seal.

'L 6.2.1 Procedure

Figure 6.4 is a block diagram showing all the basic steps in the

prrcedure. Individualblocksmay signifyvery complexcalculationsor

a lengthyiterationprocess. As an _xample,Figure6.5 illustrates

the stepsin calculatingthe fracturepotential(Step8 in overall

procedure).Figure6.4 has also beenincludedat the end of this

sectionas a foldoutfor referencewhileusingthe designsteps.

)

6-23

1974005081-236



v ..... b e
.LJ J. L Jill -_- _ ...... I-q_ : "-'_ "_T " _

6-24



..............I ,i

1974005081-238



O
)

Calculation Make/Don't Make Criteria ]
p

The designer cannot blindly follow the calculation routine. When-

ever possible, short "make/don;t make" criteria should be ........_ _-_iil_ I '.u
uy_u I_

judge the criticality of a parameter or design property so effort is
l

not expended on calculations of answers not essential to success of the i
L

seal design. !
i

Inputs fall into the general categories of operatin_ conditions,

, material properties, service life requirements, and performance goals.

It may be difficult to assemble a complete set of mQterial properties

data. Such a compilation would include stress-strain, creep, re-

laxation, recovery, permeability,wear factors, swell, etc., as a

function of loading, temperature, chemical environment; a comprehensive

set of data is seldom available.

: Calculation Method !|

_) ,' This procedure in its entirety can be used today but certain steps

, within it are beyond our present technological resources. Those steps

which meet the "make" criteria and can be implemented should not be

neglected or bypassed if available input data are sufficient to carry

out the calculations. Exceptions are those cases where a full warranty

' of success is given by complete (and reliable) empirical data. In the

detailed description of this procedure on the following pages, presently

available calculation methods are shown; hopefully all of these steps

can be organized so as to be suitable for computer programming.

Go/No Go Criteria

Go/no go criteria are needed for many of the steps so results may

be assessed before going on to the following steps. These criteria

should include intrinsic limits (e.g., ultimate material properties),

design goals, yardsticks of good design practice, etc.

.4

r
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6.2.2 Leakage Model i

l "iThe leakage model is based on the concept that there is a mass

conducLaf_ceparameter,I",which is _,,,_,,,_h]_.v...r..._.-and equalto the mass leak i
!

_. rateL dividedby a flow potentialterm, B: (Reference2) !'

r=g
i,

The simplestcase is when circumferentialand r_.dialsymmetryis

assumed(i.e.,there are no variationsin stresslevelor propertiesor i

finish). In that casea lumpedexpressionfor conductancecan be used. !

=. But if it is desiredto accountfor localvariations,as from flange ,

• distortions,real stressdistributions,etc., thena summationprocess

must be used. As an example,considera circularflat landacrosswhich

leakageflows. Summationsmay be made by dividingthe land intoa

numberof radialflowchannelsto accountfor circumferentialvariations;
the overallconductancei_ the sum of these parallelconductances.For

i radialvariations,these channelscan be dividedintoconcentricradial
zones;the conductancefor one channelis the sum of thisseriesof

conductances.Figure6.6 is a diagramshowingthe generalcaseof
radialchannelscomprisedof concentriczones. The formulasfor summingi

=i theseparalleland seriesconductancesare shownalso. A relatively

= complexprocedurefor computingthe conductancecharacteristicof a

surfaceusinga squaregrid has been developedby GeneralElectric.

(Refer__nceg).

One advantageof the conductancesummationprocessis that it leads

to a possibleway of analyticallypredictingthe effectsof local

featuressuchas flaws and contaminationparticle_.=Figure6.7 illus-

tratesone approachto modellingthe presenceof a particleon the hard

surfacewhich has been enclosedby a soft sealmaterial. It is assumed

that the contourof the softermaterialand the bearingstressunder it

can be modelled(seebelow)and that the range of influenceis limited

(thereis a lineof seal-to-seatcontactaroundthe particleand another _i

lineoutsideof which essentiallyfull sealingstressexists). (Ref.88).

Hencein thosechannelsand zones c_veredby the rangeof influence,the

conductancewill be differentthar_over the restof the sealingsurface.

Q
-'_ _LI-

I ,

"---II " '" "t'--"t'_'''--"'v "" _' '_ ...... m"'_ --_ _....."_ ,1,_r_---__'_;_ ____ ...... ___ ,....................... ___.__ .

1974005081-240



-,,s

.... 6-28

lwn,,,.

]97400508]-24]



| . fl I.." I -_- -- J_--- ......Ji_" --J .- _ -- J .I II ...... _ "_ -_i_



To calculatethe alteredconductancepiecemealrequiresa model of

the particle,the flowcross-sectionadjacentto it and the bearingstress

contourbetweenthe ilneot contactand the one of full _alitlgstress.

The lattertwo problemsare the most difficultto solve. Apparently

thereare only two ways presentlyavailableto solve theseproblems:

l) measurethemwith scale-modelsor 2) use a finite-elementcomputer

analysis. Althoughtheseparticlarproblemshavenot been solved,TRW

has usedits finite-elementprogramto determinethe stressesand strains

in an elastomericseal. (Thesame job involvedpredictingthe propagation

of a flaw, i.e.,a void or cut, in the seal to the pointof failure.) An

analysthas given the opinionthat,with suitableextensionsto handle

changesin propertieswith temperature,thisprogramcould be used to

calculatethe contourover a particle(or crack)and the adjacentbearing

stresses. However.thisprocessis time consuming(andfairlyexpensive).

One methodof empericallydeterminingsealdeformationof complex

shapeswithoutthe use of a finite-elementprogramis throughthe use of

._ two dimensionalmodelsas shown in Figures6.8 and 6.9. This technique

involvesusinga fixturewhichwill retaina scaleelastomercross-section

and the matingsurfaces. The seal is th_ndeformedprogressively,using

the cross hatchlinesto determineapproximatedeformationpatterns. A

complexseal shapeis shown in Figure6.8 and in Figure6.9 is shown the

deformationof a typicalO-ringcross-section.

6.2.3 Choiceof Configuration

Choosingthe sealconfiguration(s)is, of course,one of the most

criticalsteps in any sealdevelopment.It is chieflyin the selection

of the seal configuration(andany adjustmentsto it provennecessaryby

the designcalculationresults)that the designerexercisesjudgement

and bringsto bearhis creativeskills. That judgementis largelyderived

fromexperienceand familiaritywith state-of-theart materialsand seal

designs. Hencea writtenguide cannotbe a substitutefor judgmentand

, experience.

............... ... _..-,.. __
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Fully Compressed

{ ' Figure6.8 DeformationPatternof ComplexSeal
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Fully Compressed

Figure 6.9 Deformation Pattern of Typical O-Ring .)



"r_ Nevertheless,thereare certainguidelinesand generalizedaxioms $

_ which helpeven the experienceddesignerto remembersomekey points. . 4

_ Suchpointscould be summarizedin a "checklist"of thingsto consider

_ while selectingconfigurationsfor trial calculation.A completelisting

is beyondthe scopeof this repoY_but so_ of the pertinentsubjectsare
,A

x_ brieflyreviewedbelow

_: To properlyengineera seal configuration,sufficientconsideration

_- must be given to the overall4nstallationwhichencompassesas a very

minimumthreemembers:
I. Carrieror mount u

_ 2. Seator matingsurface
3. Seal proper

Major consideratrionswith regardto the carrieror mount are limi-

tationson how the sealmay be installed/removed,how the actuationforce

is transmittedto the seal;how the seal is to be fastenedto the carrier;

what provisionmay be made to controlmlsalignment;extrusionclearance;

and the degreeof exposureof the seal to fluidpressure. For certain

O types of staticsealswhich deformlike hydrostaticfluidsunderpressure

(e.g.,rubberO-rings),the voidvol_e in the glandmay be criticalas

may be the cross-sectionalshape of the gland. If the voidvolumeis too

small,swellingor thermalexpansionmay causethe seal to extrudeor to BB
forcethe glandfacesapart. Perpendicularglandwallsor thosewith re-

entrantanglesallowlessextrusionthanglandswith substantiallyentrant

walls. With regardto the seat or mating surfacethe prime factorsare

the surfacefinishand the sealingsurfaceangle and width limits.

Seal cross-sectionsare theirmost individualcharacteristic.A

wide varietyof cross-sectionaldesignshave beentried but a very high

percentageof them are of configurationswhich fit into one of the six

fundamentalformsshownin Figure6.10. In additionthere are complex

sealsbuilt up of severalelements. These includeredundantseals,

springloadedseals,sealswlth backuprings,etc.
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i

! ., ,!

RECTANGULAR

B. CIRCULAR (SHOWING
SIMPLE AND COtAPLEX FORMS)

C. RADIALLY LOADED D. CUP OR U-SHAPE

\
\ I

E. LINE CONTACT F. BEVELED AND SPHERICAL b_ND

Figure 6.10 The Six Fundamental Forms of
Seal Cross-Section Configurations

)
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"P Shapesare chosenunderthe influenceof a large numberof consider-
k,

ations,amongwhich are:

l) Achievingsufficientsealingstress

2) Geometricstabilitypotential

3) Keepingfrictionlow

4) Minimizingwear

5) Avoidanceof problemscausedby creep

6) Preventingextrusion

7) Compensatingfor changeswhich leadto seal degradation

, • 8) Fabrication

:_ 9) Installation,inspectionand maintenance,removal

SealLoadi,i9 and Stresses

_i In order to generatethe stressesnecessaryto producesealing,loads

_ must be appliedto seals. Seal loadsmay be characterizedby the magnitude,

direction,and pointof applicationof the forces. The internalstresses

. generatedare a resultof the interactionof thesefor.-s,the sealmaterial

(._ properties,the environmentalconditions,and the seal configuration.Seal

loadsoriginatefrom:

I. Actuatorforces

2. Springforces

3. Fluidpressure

4. Frictionforces

5. Bulk behavior(suchas thermalstressand elasticstress

as in O-ringsstretchedover a rod)

Apparentlythereare at leastfivebasicmechanicalloadingDatterns:

I. Localcompressive

2. Distributedcompressive

3. Bending

4. Shearing

5. Fullyconfined

_, These are illustratedin Figure6.11.

?
2 ],

L g 6-35) 'h _ :

g, ", )

a

_ '_ . ....

]97400508]-248



A. LOCALCOMPRESSIVE B. DISTRIBUTEDCOMPRESSIVE C. BENDING

E. FULLYCONFINED

D. SHEARING

:. Figure 6.11 Five Basic Types of Seal Loading
)

Few seals are subject to loadlngs purely of one category but instead
I

most loads are combinations of two or more modes.

Fluid pressure forces may be directed so as to be in-line with the
-I

interface, or at some angle. Some soft polymers, especially rubbers, act

as hydrostatic fluids so that the angle of the surface te which the pressure

is applied makes little difference since the pressure is transmitted through

the bulk and appears as normal pressure at the sealing interface.

Geometric Instabilities

Instability of a configuration under certain loading con!itions can

result in serious problems. Recognition of the possible forms of in-

stability during the design phase presents the opportunity to introduce

design solutions which either eliminate or at least minimize the effects of

the potential instability. Figure 6.12 shows four common types of geometric

instability which can cause problems in polymeric seals.

)
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A. BUCKLING B. ROI.LING C. DISHING D. WEDGINC

Figure6.12 FourTypesof GeometricInstability
,. Encounteredin PolymericSeals

Bucklingand dishingare usuallycausedby fluidpressure. Rolling

occursin dynamic(reciprocating)sealswhen the drag (frictionforce)

exceedsthe torsionalstrengthof the seal. A similarresultin the periph-

eraldirection,called"wrap-around"occursin rotaryseals. Wedging

resultsfromovertravelof the movingpartswhich contactat an angle.

FrictionForces

In general,at a givensealingstress,frictionmay be keptas low as

possibleby properchoiceof:

1 Materialcon_ination

2. Surfacefinish,neithertoo roughnor too smooth

3. Rubbingspeeds

4. Areasof contactas low as feasible



Wear "_ "

Wear is a functionof essentia]lythe same parametersas those given

for frictionabove plus the lengthuf strokeor rubbingdistance. It is

seriousif the seal loosessufficientmaterialto changeits shape or

loading,or contaminatesth_ system,or becomesroughenedbeyondallowable

_imits.

CreepProbleros

Certainspecificformsof creep can leadto seriousproblems,hence

thesepotentialcreepsituationsshouldbe recognizedin the designphase

so designsolutionscan be incorporated.Figure6.13 illustratedfourof

these forms, Bulk shapechangescausech nges in the stressat a given

I.' positionor changesthe positionat a fixedtotal load. Micro-scale

asperityinterlockingcausesan adhesiveconditionto developbetweenthe

._ contactingsurfaces. Featheredgingcreatesthe potentialfor particulate

',_ contamination.Extrusioncan causecuttingand interlockingof oppnsite

__ partsby wedgingaction. ) '
I:
¢

'I

•_. BULKSHAPECHANGE B. MICRO-SCALE INTER- C. FEATt'tEREDGINC_:,- D. EXTRUSION
LOCKING OF ASPERITIES

Figure6.13, SealProblemsCausedby Creep

)
4

38

m_

i

1974005081-251



i Extrusion
J

Designfor preventionaf extrusioninvolvesloads,materialproperties

and configurations.It shouldbe rememberedthat surprisinglyhigh loads

can be generatedwithina seal by thermalexpansio,_o_"swell so thateven

sealswith adequatelylow extrusionclearancesfor the mechanicaland fluid l

pressureloadsmay be extrudedunderthese influencesif the glandbecomes i_J|,,

completelyfilled. The solutionto thisproblemis to providean adequate I

voidvolumein the gland intowhich the seal can expand. The proportions
JC

of thischannelmust be judiciouslychosen,however,so that at low tempera- _
turewith the sealcontractedit is stillloadedsufficientlyto sealand

supportedadequatelyagainstfluid pressureforce to avoidgross distortion.

Compensation

Sealsmay be designedwith featuresor configurationswhich compensate

in full or in part for someof the factorswhich might otherwise:ontribute

to degradationof seal performanceor integrity. Some of the factorsfor

which compensationmay be providedare: i
!

• i

" I. Wear

2. Volurrmchange(thermalor swell)

3. Misalignment

_ 4. Fluid pressure-loadvariations

5. Shapechangedue to configurationalinstability

6. Hardnesschange

Fabrication

Designto achieveprecisionand/orreproducibilityin seal fabrication
must take cognizanceof the typeof fabricationprocessesto be used and _

the basic propertiesof the materials. For example,moldedparts undergo

shrinkage,must have sufficientrelieffor removalfrom themold, etc.

Machinedpartsof unstablematerials(i.e.,soft polymers)are difficult ._
to finishto very smoothsurfaceroughnessand to verythin sections :'_;

unlessvery specializedtechniquesare used. _'

6-3g _,
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1

Installation,inspectionand Maintenance,Removal
)

The most commonoversightin designingnon-elestomericsealsis the
set they _k, if _+_+_h_H over gland partsdL'-inginstallation,hence Lhe

need for a complexmountwhich can be disassembled. I_
t

Summaryof Major DesignConsiderations !
L

Aboveall, the seal designershouldkeep in mind the following !;

major considerationswhen choosinga seal configuration. I_

I. Thermalcyclingexertsa stronginfluenceon changesin seal performance. !

High temperatureperiod_induceset and relaxationwhich d_-asticaliy
impairsealingabilityif followedby low temperatureperiodsduring
which the seal contractsappreciably.

2. Soft partsmust be supportedso the seal can be loadedwithoutexcess
creepbeingallowed. Distortionmay occurin closuresealswhen
valvesare partiallyopen if appreciableaP's load unsupportedsections
of the seals. In the worst casethis distortioncan be so bad thatthe
seal is damagedthroughgrossmismatchwhen the valve is closed.

3. Excessiveswell can also cause suchgross changesin size or shapethat
the resultantmismatcheitherchangesthe valvedischargecoefficient
;nthe fully-openpositionor damagesthe sealupon closure.

4. Sealconfigurationis inextricablyinterconnectedwith sealwear and -'_
distortionpatterns. Especiallyseriousis the tendencyfor many

_i

configurationsto resultin creepingand wearingto a featheredge
which eventuallydisintegratesintoparticularcontamination.Also
_riticalin pressureforcebalancingis consistencyin the effective
sealingdiameter;creepand wear may changethe diameterso force
balancesare upset.

5. If liquidsare containedby dynamicor valveseat seals,the wear rate
may be radicallyalteredby the lubricityof the liquid. Limitations
on dry cyclingduringtest and checkoutmay be necessaryto reach the
expec_.edin-servicelife.

6. The largedifferencesin thermalexpansioncoefficientsbetweenthe
metal partsand the polymericsealmaterialscan leadto distortions
and internalthermalstressesor reductionsin sealingstressesunless
_he configurationis intrinsicallyimmuneor compensatingdesign
featuresare provided.

6.2.4 DesignProcedure

The followingpagesof this sectiondefinein detail,the procedural

stepsshownearlierin Figure6.4. Each stephas the basic formof a

tablewith the followinginformation:

4
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I • Make/Don'tMake Criteria(shouldthis calculationbe made?) _'

• InputsRequired(whatinformationis required?) _"

• AvailableCalculationMethods(whatcalculationmethodscan be
used?)

• Go/NoGo Criteria(shouldan iterationbe made or continueto
the next step?)

The numbers in parenthesis in the design procedures are reference :_

numbersand applyto the referencesin the bibliography,AppendixD.

The procedure diagram Fig. 6.4 has been included as a foldout

_t the end of this sectionfor convenienceand numberedFig.6.14.

i

./

.!

0
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__ P_ 1 of 1

STEP1 - LIST REQUIREMENTS '._
r

MAKE/DON'TMAKECRITERIA: ,
Make in all cases ) "

........................ i

Inputs Required: i
I,

A. Environment during eperation and storage: i
I. Temperature, fluid and external amdient I

I,

2. External loading I!

a) fluid pressure, both static and dynamic i

, b) structural forces, static and dynamic ,
, 3. Chemical species present

4. Contamination

a) particulate

b) deposited (residues, gels, etc.)

5. Vibration and shock

6. Radiation

'.,j B. Life cycle:
. I. Shelf life

2. Duty cycle(numberof cycles,lengthof open and closed -)"'_
periods,etc.)

3. Post-operative

C. Allowable leak rates:

I. Duty cycle

2. Post-operative

D. Others

AvaiIablemethods:

(not applicable)

!?' Go/NoGo criteria:
(notapplicable)

I
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Page 1 of 2
STEP 2-- SELECTMATERIALSAND CONFIGURATIONBASEO

ON INERTNESSt SWELL,AND OTHER PROPERTIES

MAKE/DON'TMAKE CRITERIA:

Make in all cases.

InputsRequired:

Materialspropertiesdata:

I. Inertness

a) Swell or shrinkage

b) Washoutof ingredients _'

r c) Propellantdecomposition

! d) Changein mechanicalproperties

2. Hardness

: 3. Permeability

: 4. Creepand relaxationpropertles

5. Thermalexpansioncoefficient

• 6. Tear strength

•"_ 7. Wearresistance

/ _ 8. Fabricationcharacteristics

a) Smoothestfinishavailable _
' b) Toleranceson dimensionst

AvaiIable methods:

Quick-checkdesigncalculationsor judgementscan be made based

on experience. When necessarythe followingguidelinescan be followed

with regardto propertiesand the p,-oblemsdiscussedin Section6.2.3 _

taken intoaccountin the configuration.

Property DesiredCharacteristics

Swell Low as possible _,

Shrinkage Low as possible ";

Washout Low as possible

PropelIant decomposition Low as possible

,_.,, Chantlein mechanicalproperties Low as possible
:_, Hardness Best,range is 70 to 80 ShoreA

: 6-43
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t
: Page2 of 2

' STEP2 - SELECTMATERIALSAND CONFIGURATIONBASED

'. ON INERTNESS,SWELL,AND OTHER PROPERTIES ,.

i, I Permeability Low as possibleif low leakage I
i de_ir'ed and _,ate,ial is strong Ii
! enoughto withstanddepressuri- :

zationtearin]
i r

Creepand relaxation Low as possible ,:L'

Thermalexpansioncoefficient Best is sameas adjacentparts, I!

otherwiseas low as possible I_
LTear strength High as possibleand above lO0J

' pli if possible

Wear resistance High as possible

: Finishavailable Smoothas possiblebut at least
125_in rms

Minimumattainabletolerance Smallas possiblebut at least
on dimensions + O.OlO in on smallparts (I/2

inchdiameter)

C':

i
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!

r_g_1o_6 ISTEP3 - CHOOSEDIMENSIONS r

L

MAKE/DON'TMAKECRITERIA: . f
,, Make in all cases. I
" i

i Inputs Required:

1'

Dimensions of seal/seat assembly. As a minimum, the dimensions I
shownbelowmust be fixed. For other configurations,determinecri- i

tical dimensions and select values.

Ok_zt,_f (It

• IaC

_ VOg _.M -- -- VOID VOLU_ ---

A. FLANGE STATIC SEAL
B. ROD STATIC SEAL

(SIMILAR DIMENSIONS
USED IN BORE SEALS)

--"_, _uefo

N. _ l ,
!. ,- , -,,

'°= "l -

¢ _FIINI'k_-

lo,,.,- _ _ _ / I 7 °

D. FLAT POPPET SEAL
I" M_T! saI_IIINOUINO_N ISSII01_III IRON

STIIOKI IT tOTaL _ Of III TIAVIL
AI _ltJMl_ SUl_kCll

"-,. DYNANIC PISTON SEAL
(SiHILAR DINENSIONS
USE:) FOR CYLINDER SEALS)

i

.........
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!

STEP 3 - CHOOSEDIMENSIONS i

Availablemethods: !
I

Short-cutdesigncalculationsand "rulesof thumb"can be used to i

estlmat_reasonabledlmenlons. The particularcalculationsor rules

are specificto each type of seal• Typicallythe followingare cal- ii
culated: i

A. Staticseals

(SeeReferences217 for O-rlngdataand 218 for flat gasketdata)

l Squeeze= free height(or diameter)- grooveheight• freeheightI

Typicallysqueezesare _.lO to 0.30 at roo_temperature;squeezeat

; temperatureextremesshould be checked_eforeselectingthe room

temperature-squeeze.For flat gasketseals see Reference218 for

conservativedesigndata. For O-rings,see Reference217; note

• that the squeezeis basedon the reduceddiameterof the O-ring
t

(seebelow).

i,
, 2. Void area = groovecross-sectionarea - seal cross-sectionarea.

i _ _ ) Typicallyvoidareas shouldbe based on the crosssectionof the

sealat its absJlutemaximumtemperature(notmaximumoperating)
aftermaximumswelling(seestepQ ; a 30 percentvoid area

at

room temperatureis oftenselectedfor rubberO-rings• For O-rings,

the void area is:

Av = groovecrosssectionarea - _w2 (l - x)2 where,

x= _ _ 6(A _ K) in glands

x = TO" over rods

and x - amountof O-ringdlan;eterreductiondue to stretching

w = cross sectiondiameterof O-rlng

A = gland diameter

B = rod diameter

K - 1asidediametero_ O-ring

0
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Page 4 of 6
i"

STEP3 - CHOOSEDIMENSIONS

Availablemethods(continued) 1

3. Extrusionclearance= maximumdiametralclearanceseenby sealon

low pressureside.

See Reference217 for 0-ringclearances.Generallytheseare con-

servative(i.e..smallerthan necessary)for other typesof static

seals.

B. DynamicSeals

, Dynamicsealdimensionsmay be choseninitiallyon someof the

samebases as staticseals and lip seals.

1. Interference is usually based on the allowable friction force and

wear: To minimize the friction while providing adequate strength

dynamicsealsoftenare beveledto rideon an edge,hencedeter-

I miningthe load ts a complexmatter. If springloadingis used,
t

the interferenceis usuallyzero withoutthe spring. Self-loaded

., sealswhichmust sealwell may havea dfametralinterferencesuf-

ficientto generateradialstressesup to 100 psi or innerfiber
_tressesup to 0.1 of the yleld (whicheveris less).

, 2. Void area (seestaticseals, above).

3. Contactwidth variesover a very wide range. Chooseto achieve

the loadlngsmentionedaboveunder "interference".

C. Poppet Seals

1. Seat Angle

Seat angles usually range from 45 to go degrees. Smaller angles

increas_ wear but improve self-centering action. Sometimesthe

sealfaceangle ts slightlydifferentthan thatof the seat so a

progressivecontactis made duringclosure.

2. Load Width

Loadwidth shouldbe wide enoughto achievedesiredstresslevels

or deflectionsunder the loadspresent;typicallytheseare 50 to

,_ 500 psl for TFE (thehighervaluesbeingfor glass-flll_dTeflon)

and I0 percentdeflectionfor rubber. One sourcerecommends
.J
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STEP 3 - GHOOSEDIMENSIONS

Availablemethods(continued)

40 to 50 percentof room temperatureyield stressif the valve is

to be operatedat thattBiiperatuk-eand 70 to 80 percentof roo,,_

temperatureyield if it is to be used in cryogenlcservice.

(References71 and 87).

If very largecontaminationparticlesare expectedthe landwidth

shouldbe riotless thanfour timesthe largestexpectedparticle
dimension.

3. Diameter

The sealdiameteris usuallydeterminedby the trade-offbetween

the pressure(energy)lossand force balance. Pressureloss is

a functionof stroke,inlet/exitflow path configuration,flow

, velocity,etc.;a largerseal diametercompensatesfor a short

strokeor vice versa. The forcebalanceinvolvesthe seat
_t diameter poppetshaft sealdiameter,the springforce (if an

){ . and the fluid pressuredistribution•Usuallythe sealdiameter
!° ! _ is made nearlythe same diameteras the shaft seal in larger

'_ valvesso as to minimizethe unbalancedpressureforce.

'_ 4. StrokeAfter Contact

The amountof strokeafter contactdeterminesthe degreeof seal

deflection,hence it must be basedon allowablestressin terms

of sealingand cumulativeyieldingand set;see 2 above•

D. Lip Seals (Reference55)

I. Finddinmnsions(seeFigureg, page 6-46)which satisfythe

equation(Reference222)

0•6 = E + _ D - + FR, where

E - modulus_f elasticity

S = flex sectionthickness

0
i
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STEP 3 - CHOOSEDIMENSIONS

Availablemethods(continued) , ,

hE = length
• D = shaftdiameter

Ds = seal freediameter

FR = springradialforce per unit circumference

2. Contact(land)width shouldbe less thanO.Ol inch.

E. BallValve Seals (Reference87)

, I. SpFericaldiameter(diameterof ball)= 1.7 to 1.8 timesbore.

2. Boreof seal= 0.65 to 0.67 timessphericaldiameterbut not

lessthan bore.

, 3. Width of land. to achieveproperstresslevel (_• 60 psi for

• TFE Teflon).
t

' 4. Sphericity oF ball = _0.0005 inch (Reference 71).
i

,i [ Go/NoGo Criteria:

i _ (Notapplicable)
I
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STEP 4 - CALCULATEPERMEATIONPOTENTIAL

MAKE/DON'TMAKECRITERIA:

C_ Make Ifthere is a critical_ossrate or totalaccumulateddown-

streammass or pressure.

InputsR_quir_d:

criteriafor allowableper_eatiunrateor totallossor accumulation

downstreamor downstreampressure. _

Availablemethods: The steady-statepermeationrate,_, is (Ref.36) !

PA(Pl - P2) Where: ¢ = mass flowratem= t
P = pe_.eabilitycoefficient

A = flow area

Pl = upstreampressure

P2 = downstreampressure
t = membranethickness

Over smalltemperaturechangesthe Arrheniusrelationcan be used te

calculate a permeabilitycoefficientfor temperaturesother thanthose i

f_, whichL_npiricaldata are available(Ref.36)

P = poe

Where: P = permeabilityat temperatureT

Po = permeabilityat base temperature
e = 2.718

Ep = activationenergy

" gas constant

= absolutetemperature

Note thatif Ep is not knownbut the permeationat two different

temperaturesis known,then Ep can be calculated.Over :arge tempera-
ture ranges,the permeab|Ity does not followthe Arrheniusrelation

and must be determined_ "ically.

6-51 ;;,.
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STEP 4 - CALCULATEPERMEATIONPOTENTIAL

, Availablemethods(continued) _/

If the permeatingsubstancefillsa closeddownstreamvolumeat constant

! temperaturewith gas at pressureP2" then P2 may be approximatedas a

! functionof time usingthe relation: r

i-_' P2 = Pl 1 - e

Where: o = time afterinductionperiodcompleted i
Vt

= ZRY-)-A

V = closeddownstreamvolume

Z = compressibilityfactorof the gas

If the permeating_ubstancefillsa very largedownstreamvolumewith
m

liquidhavinga vaporpressure,thenthe total lostmass AM is approxi- ..

, mately:

: (p)1 " Pv " Pg 0 if Vllq < <V

-'_ Where:Pv = vapor pressureof permeant

; : )
pg pressureof gas _ downstreamvolu_e

If the permeatingsubstancefillsa smallvolumedownstreamvolume,which l

containsa permanentgas at constanttemperature,with liquidhavinga

vaporpressure,thenthe totallostmass, AM, is approximately

Oo .o)- _ 1 - Pv - do
Vo

Where:AM = liquidmass accumulated

= llqbldpermeationrate

Vo --Inltlal downstreamvolume

Po " initialdownstreamgas pressure
p - liquidspecificmass

Thisimplicitfunctionmust be solvedby successivenumericalintegrations

6-52
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Page 3 of 3 !STEP 4 - CALCULATEPERMEATIONPOTENTIAL

d

' Go/NoGo Criteria: I

© ,If permeationexceedscriteria,returnLo Step . Choosea ,,,._=,,

with lowerpermeationif feasibleto do so. If not, in Step@, reduce i
dimensioncontrollingper_mationarea &

(,.

I

l

0

@
6-53 _;
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STEP 5 - CHOOSETOLERANCESANG FTNISHES

MAKE/_._'IMAKECRITERIA: ) " t
Make In all cases v

InputsRequired: :,

' DimensionsfromStep 3 L
P

Tablesor graphsof tolerancesvs cost formaterialsto be used ,.

Avaifablemethods:

A. Tolerances _:

In choosingtoleranceson parts thereare two factorsto be i

considered"

I) The actualdesignrequirements,and

2) The economicand practicallimitationsof current
fabricatlontechnology.

Dimensionaland geometricanalysisis necessaryto estimatethe

designrequirements."Rulesof thumb"are availablefor some

typesof sealdesignsbut generallyconsiderableanalysisis

requlr(dto optimizethe tolerancesand finishchoices.

_" Tolerance.*availablewith currentfabMcation technologyas a -_t

•; functionof part size,material,and cost are bestsummarizedin
l

-I graphsfrom reliablesourcessuch as the Societyof the Plastics
) InGustry,Inc. A typicalformatis shown below (Ref.212).

'T_ III..al

I_lm_ al_llilWIlIDmll

_[J|, ol wliltlo, l. fifo. 11_l_llw [;;li, I ,,lwln lulnl1.1n]._I:

. ,.

_" "_ L.i.__ --I_-_r'b.i T_,.Ji i iTWr-t-llillll!
• _ "_t-m- . .- ---.

' ."."-=- o,I ,_"o_-Z- ,._..... I"-TL'q-r

• _. _,,_o_, ao,,', 1,..., _ ooo3I_.I
--'T._,_,.... ro_o_I --,..;.-_ "

mill Ii_lm i I i liiii Ii _ii dlii_,_l elIIill

I ",?" r,-- I - ...,..._...;L. .......
I b-"I'_ |lilnlil/Utllllilllilll It il t--...¢

.... """""" '"''''
l-"."l--a..':-.-.-", ...........
t " t ''""" .,_." .......................... _ ,

n in
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STEP 5 - CHOOSETOLERANCESAND FIRI_HES i

{ _ When thesedetailedand and specificgraphsare not available, , ,
informationcan be obtainedon standardmaterialsdirectfrommanu- !

factur!n_personnel. Condensedinformationoften relatestolerances
k

in blocksor groupsof dimensionsratherthanas continuousfunctions I_

' Table 6-6 listsexamplesof tolerancesordinarilyheldwhen machinih,g ii

, stainlesssteel in the TRW manufacturingarea. z

Unstablematerialspresenta much greaterproblem. The grindingof I

rubberpartsto precisiondimensionsis difficultat best so liberal I

' tolerancesmay be needed. Wheneverpossible,polymerpartsshouldbe :

moldedto shapeand dimension. ARP's,NAS drawings,AN standar(_s

and manufacturersliteratureon O-ringsgive typicaltolerances

which can be held in mass producedarticles(seeRef. 214,215, 216

and 217). Generallythere is a minimumtolerance(_ 0.003 inch)

which shouldnot be reducedon even the smallestpartsunlessvery

high costs can be Justified.

In the absenceof all othersourcesof data the followingrulesof i

"v thumb should be followed formolded polymer parts:

"-_(-) I) Moldedpart tolerances= mold tolerances+ shrinkage
!

reproducibility.

2) Formold tolerancesuse metal machiningtolerances.

3) For shrinkagereproducibilityuse ± I/2% of dimension.

4) In most cases the total tolerance should not be less than

1%of the dimension or 0.003 tncil, whichever Is greater,

and up to 3% is more reasonable.

B. Finishes

In selecting finishes it should be rememberedthat finishes |
affect:

1) Friction coefficient and lubrication properties.

2) Ease of cleantng

6-55 _
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Page 4 of 6
E

:= STEP5 - CHOOSETOLERANCESAND FINISHES
F

COP_R-ON-COPPER ,
SLIDING VELOCITY = 0.01 CM/SEC 11

i IZ 1.01- ,.

._ _0 0.5 SHES '

J J_REAL CONTACT AREA INCREASING INTERLOC ;

5 10 2O 50 , I(X __

SURFACEFINISH, v IN. (RMS)

Available methods (continued)

3) Compatlblllty with propellants __."

4) Resistanceto fatigue,tearingand wearing

Finishis generallycalledcut as the RMS* or AA* valueof asperity ?

height, wave length, and wave height. Units are micro-inches. Rough

machiningof metals leavesa finishof about125_ inchesRMS. Such a

rough finish is never left on sealtng surfaces except when large

flanges &re to be sealed with soft gaskets or serrations are provided.

Ftntsh machining typically is 64w-tnch but sealtng areas are usually

• RHS= root meansquare deviation fren the meansurface

AA = arithmetic average _vlatton from the mee_surface ._

Q i i , i

.%

6-57 _

.... • ........ i

. . ,.--." ,; _! _ • - -_ - " , • •

..... "" _' ........ "',_ "'_: "_ "" ""_ "_ ..... -"................................. "'_l.--,'.,-.v'_ ,,_ .,,, , .v- ..... r-- "-" _ " "_ _le' 4,,

1974005081-270



• + 1
p'

Page 5 of 6 i:
STEP 5 - CHOOSETOLERANCESAND FINISHES l

f
L

Availablemethods(continued): ) .

specifiedas 32_-Inch. Finerfinishessuch as 8 or 16u-inchare required iIi

for low loads,low wear rates in dynamicsealsand very low leakrates }i
with harder seal materials Ultra-fine finishes of 2 to 4u-inch must be r

made with specialpolishingtechniquesand are excessivelyexpensive. )

Lappingis calledfor when contoursmust match (e.g.,when a sphere- I.

Icalseatand sealmust fit perfectly). I )t

, l+I

The relativecostof metal flnl_hesis shown on Table 6-6. Carefully i
moldedpolymerpartshave the same finishas the mold unlessvoids are i

left unfilled. Polymer parts may be rough if the characteristics of

the polymerresultin tearingduringmachining,howeversome shops

have specializedtechniquesfor grindingthat leavesa very finefinish

on even softpolymers.i
) "hen no other guidelinesare avallable,the valueslistedin Table 6-7
)

+_,,., i are recommendedfor the initialdesign point.

( For leakagecalculatinnsa differenttype of calloutis neededwhich )

specifiesthe asperity"peak-iv-valley"height,Y.** No directcor- .+
respondenceexistsbetweenY and the RMS or AAvalue since the shapeof

the asperitiesis involvedin arrivingat the RMS or AA values. If Y

cannotbe specifiedor measured,then a rule of thumbwhich may be used

is Y_3.5 RMS.

• .

(

_ Go/NoGoCrlterla:

+_'' "" (not applicable) -,,
+

_++,_.,- ++ +

-/

++ ** usually the symbol h is used.

"+_:++' 6-58
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STEP 5 - CHOOSE TOLERANCES AND FINISHES i,

4r

;

SpecificSurfaceFinishRecommendationsfor InitialDesignPoint Ii

I
Desired I Finlsh_F-inchesRMS

Type of Seal M_:terialof Seal RelativeWear] ""
and/or Seat Seal
Leak Rate

Nomihal 125 125
Elastomer

Flat Very low 64 64
Flange
Gasket Nomlnal 32 64

Plastic
Very low 16 32

Nomina1 64 64
Elastomer

Static Very low 16-32 32

O-RIng Nomlnal 32 32
Plastic

Very low 16 32

Nominal 16 32

Very low 8 32
Elastomer

Dynamtc
Nomlnal 16 32

Plastic
Very low 4-8 16

Nominal 32 64
Elastomer

Very low 16 32
Poppet

Nomlnal 16 32 ,
Plasttc -, _,

Very low 4-8 8-16 _!

Nominal 32 64
Elastomr _

Ltp Seal Very low 16 32 _.TZ

Nomlnal 16 32 !_P1astt c

Very low 8 16

Nominal a 32 - '
Ball Valve Plastic ........

Very low 4 16 '_

NOTE: For cryogenic service use lower numbers. For light gases ,
(heltum, h_rogen, etc.) use one-half the lowest number.

6-59 •

........... :Z__.:,TZW_.'--,"L..'r'.'..--Z...'_.'"-..' .. "_._." ", ..... .... ......... _ -- .. -,,,- .,.,,-.',--',---"_'_ ........ ................,--.
_ ..... _.. ,..,..h_..._a-_- --- =.. - - " "--" ..... _ .._u*_ _',."%."_._.Z."" "" " |

!
'I

1974005081-272



j. I _

I

Page 1 of 8 I

STEP 6 - CALCULATE MISMATCH INCLUDING EFFECTS OF THERMAL EXPANSION/ r

CONTRACTION AND SWELLING j

!
MAKE/DON_THAKE _,L_,_._" (

i'

Make in all cases except when high leakage rates are acceptable in i

i seals exposed to only a narrow range of temperatures.
F

;:

Inputs Required: I
: i

Criteria o'Facceptable mismatch
!

Nominal dimensions of seal and associated hardware

Thermal expansion/contractionproperties

Swelling data
I

Available methods:

"_ A. Mechanically-inducedmismatches: For each design of seal

I there are errors which arise due to the geometrical rela-

I associated tolerances in the dimensions. These
tions and

, must be calculated for each case as no generalities can
|

I cover all the errors. The figure below illustrates the
errors which give rise to mechanically induced mismatch

in six kinds of seal applications. For other designs the

errors should be deduced from the geometry.

t,t _,-\ .......
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THERMALEXPANSI_ON/'CONTRACTIONANDSWELLING _.
/' l 4

\ _, AvailableMethods(continued)
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STEP 6 - CALCULATEMISMATCHINCLUDINGEFFECTSOF
THERMALEXPANSION/CONTRACTIONAND SWELLING

AvailableMethods(continued)

CONE ANGLE
ERROR (SEAT _ OFFSET ERROR l,

AND SEAL)

L

", ' /_ I_ALIGNMENT
.- _.._L ERROR
t 7l'_--__ -- OL f OF
; ._'_+_'_j_--_"_ "/_. RO'+;NDNESS

i FLATNE,_._S,S,E%ROR t _'%'_ '_+_'SEAL_//_// ERROR(SEAT
• (SEATAND SEAL) - _AND SEAL)

...... T,

: £ . DIAMETRAL
" IF"ERROR (SEAT

i SEAT AND SEAL)
I'"' 4) CONICJkL POPPET SEAL SEAT
I

A G - BOREFREE

pI:RPENERIOuR_RIT TOF ROUNDNESS

ERROR OR (BOREAN D SEAL.) ,

DIAMETRAL

ERROR _j(BOREANt sEAL)

'_!i 5) SELF-LOADED LIPSEAL

I .

5-6_
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j STE-P-6-CA-L-CUI.-ATE-MISMATCHI_ICLUDINGEFFECTSOF

t'- THERMALEXPANSION/CONTRACTIONAND SWELLING

:'_ t AvailableMethods(continued)

EXIT
'" ANGLE

ANGLE _ _2_l_f/7_}___r_

• [/J(/ I/ /Ill r/I/'[/// I'_I&LAC'II'nA !

ERROR
' LROUN"I_4ESS il L--ER_r _ tROD l

ERROR(ROD I _ ,,-,..,,..,SEAL) I

i AND SEAL) I _PERPENDICULARITY !

OFFSET ERRORq "_I _ ERROR

_RODL: ' SEAL

,, 6) SPRING-LOADED LIP SEAL

(t

FLATNESS

_ERROR CL BALL

OFFSETERRORJ I! sEALI
OUT OF SPHERICALDIAMETER
ROUNDNESS iI_ /-" ERROF,(BALLAND SEAL)

LAND WIDTH ERROR

7) BALLVALVESEAL

"C
6-6a
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STEP6 - CALCULATEMISMATCHINCLUDINGEFFECTSOF 1
THERMALEXPANSION/CONTRACTION_ND SwELLiNG

l-

AvailableMethods(continued) _ "

B. Thermallyinducedmismatches:

Thermalgrowthin one dimension,6t; due to temperaturechange

T is: _,

_t = _L T, Where: _= coefficientof thermalex-
pansion

L = dimensionwhichchanges

AT = temperaturedifferencebe-

tween nominaland worst case
i

i Thermalgrowthin volume,&V:

V = aV_T, Where a = coefficientof volumetric
expansion

' V = volume

Where empfrfcaldata are not available a method for estimating

i the thermalcoefficientof expansicnfor polymersis (38_;

i_ YCv
a = _ Where y: constant(3.83in CGS units)

i BV '

i Cv : specificheatat constantvolume
p
)

i B = bulk volumecompressibility

I C. Chemicallyinducedmismatches:

Swellof a polymermay not be isotropic,howeveras a first

approximationit may be assumedequal inall directions. Em-

piricaldata are generallyrepo_tedas volumechanqe,Q, which

can be used to approximatethe volumechange,AV, of a fu_Iv

saturatedsealas:

I V = Vo l_O ' Where: Vo = sealvolumewith no ab-
i so_i:_d fluid

i I Q = swell in percen_
Hence eacn lineardimensionchange,6L, is:

_u L Where: L = di,nens_on

6-64
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-i STEP 6 - CALCbLATEMISMATCHINCLUDINGEFFECTSOF i
THERMALEXPANSION/CONTRACTION AND SWELLING J

)' _ AvailableMethods(continued): L

k
When empiricaldata are not available,swe11,Q, may be estimatedas:

Log Q = 2.75- 0.08 [(+9-8.8)2 _ o.Igl (ap + 3.9)2 + O.191 (6H 3.4)2]
k*

where: Q = oercentswellby volumeof cc/gm
I

6D = solubilityparameter"-elatingto dispersionforces,
! (cal/cc)l/2

' _ = solubili*y-,_rameterrelatingto polarizationforces,P
(cal/cc)II"

6H = -, ,o lity pe'.'ameter relating to hydrogen bonding,
(callcc)I12

"i The solubilityparametersarc:
q

i,, 6D = read fromgraphs in reference 49

+ r, • _ _ -.

i ' _p _2._ KT _e - a2)(2_+ n2)
VN (n + 2)2-

i

• o
-! =

:! ; where: K : Boltzman'sconstant

i T = absclutetemperature

I , : dielectricconstant

n = indexuf refractionfor S_AiumD light in bebye units

! V ; Holar vo_ne

N = Avoga_ro_s n_nber :.

,_ = frequency in wave numbers, _./cm

1974005081-278
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STEP 6 - CALCULATEMISMATCHINCLUDINGEFFECTSOF

.__ THERMALEXPANSION/CONTRACTIONAND SWELLING _ [
AvailableMethods(continued): ) _ [

D. Scrubbinglengths I

One of the most significantoutputsof the mismatchcalculations _'

are the scrubbinglengthswhich can be approximated_Hth the LFfrelationsi, the table. Note that the errorsusedare the

combinedeffectsof mechanical,thermal,and chemicalinfluences, I:

Table 6-8. ApproximateMaximumScrubbingLengths

' Typeof Seal MaximumScrubbingLength '

;
Reciprocatingdynamic s - f

Rotary dynamic [I DB ..

i Flat poppet valve eD

' Coqica! poppet valve eD

"' _w:Jth cone angle of sln o_ ) ,.IL-

- Rs >

2 . R_ if Rs > RBButterflyValve V Rs

Ball valve lIDB
;I

S_mbols S = stroke ]_

DB = diameterof boreor shaftor ball

eD = diametralerror at firstcontact

f = free travelupon reversalof direction C

RE : radiusof boreor butterflydisc

IRs = f_e radiusof seal

=<_= cone angle

D = 3.14159

III == )

" 6-66 .
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[STEP6 - CALCULATEMISMATCH)NCLUDI)NGEFFECTSOF
I THERMALEXPANSION/CONTRACTIONAND SWELLING

Go/NoGo Criteria:

If criteriaare met. go to next step. If not,returnto StepZ(_.)

or3_. When no criteriaare availablethe followingrulesof thumb

may be used. The +_taleffectof all summedworst casemismatches

shall not:

I) Cause the mated surfacearea to be less than80 percentof

the nominal.

2) Cause the degreeof seal compressionto vary by a factor

of more than 1.5 to I aroundany circumferentialline on

the mated seal surface.

I

0
6-67
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Page 1 of 4 I

STEP 7 - DETERMINESTATICLOADS,STRESSES,AND DEFORMATIONS !
|

I

MAKE/DON'TMAKECRITERIA: I

f_akeif low leakageor extendedlife is required, p
°i

InputsRequired:

Empiricaldata or computerprogramfor determiningstresses

and largedeformationsin polym£:Hcmaterials _

Stressvs straindata on materials (
t

Dimensionsof seals

Loads

'I

_I Availabiemethods: r

:I Choosel_ad, stressor deformation,thencalculatethe other two.

_ Finiteelementcomputerprogramsare requiredfor a,l but the simplest
•J cases.

As a first estimateand for inputsintoleakagecalculations, 9
i

an "apparentstress"is calculatedfrom the totalload acrossth_

sealand the averagearea in contactwith the matingsurface. Some

equationshavebeenderivedfor simplecasesand are presentedin

Table 6-9.

BulkCompress.ibiIit,v

Bulk Compressibility(or BulkModulusor Modulusof Compres-

sibility)must be taken intoaccountwhen calculatingtutalstrains

in thinsectionsif the stressievelis a significantfractionof

the Bulk Compressibility.Bulk Compressibility,k, is definedas

the ratio of the uniformtrlaxlal(hydrostatic)stressto the volu-

metricstrain. For most materialswhich are essentiE.llyisotropic
(Reference18):

i
6-68 _ .

" I

1974005081-281



+ IPaqe 2 of 4

STEP7 - DETERMINESTATICLOADS,STRESSES,ANP _EFORMATIONS I

_+ E "k _3 (l-2u)" v;here;E = t4odulusof Elasticity t
J

!,= Poisson'sRatio

Puregum rubberis statedin Reference12 to havea Bulk Compressibility

of 1.5 X lO5 psi; the value increasesin inverseproportionto the percentby

volumeof rubberin mixturesof rubberplus fillers. Relerence43 reports

the calculatedk of TFE Teflon is 2.07x lO" psi and FEP Teflon is 4.14 x lO5

psi. The same referencesays that, due to changein E with time, k of TFE will

drop 25 percentin 200 hoursand 43 percentin one year; the 2.07x I05 value

is the k at 200 hours.

Reference12 discussesthe role of BulkC=Ipressibilityin tilecalculation

of stressesand strainswithinrubberparts. An examplegiven is the case of

a tnln pad of rubberloadedin compression.The total strain,cT, is: i +
; !

T E ]_ where = elasticstrain 1

_r= stress c

Elasticstrain,tE, is: i'

tE = I - _, where _ = ratioof strainedto unstrained .,
height,ignoringthe correction
above for k. ++

,!+
,,+

And _kis obtainedfro_.lthe implicitrelation, :_ -.

r = -G (_ - I__) where: G = ShearModulus_,E_ i_2 ' 3

Reference 12 gives a table of CE and X versus the term (A - _-_). _

If eitherur botllof the facesof the pad are bonded,the stress,and hence _

£T' is modifiedby a shape factor. References12 and 35 give shape factors
for compressionsandwichesbondedon both sid(;sbut no shape factorsfor

ring,,bondedon one side,as in the case of s_als,were locatedin the

i_ literature.
_ . o
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. STEP 7 - DETERMINESTATICLOADS,STRESSES,AND DEFORMATIONS
[

Table 6-g. STRESS,,,'"RUBBERSEALS .z

TYPE OF SEAL GEOMETRIC PARAMETERS APPIOXIMATE AMtARENT STRESS _;
•--: .-- I I ._. ....... _- -

•I{ I"

i oa, F
O-RING i : + P i-

t

o'* F _ p

)• I_t_

VEE SEAL .* - P, E _t
t

K ,=A CONSTANT E =-MODULUS OF ELASTICITY '"
F = LOA[_ PERLINEAR INCH P = FLUID PRESSURE _.!
d = CROSS-SECTION DIAMETER BEFORE W _ ORIGINAL UNSI'RESSEt WIDTH ,_

SQEEZE APPLIED t = ORIGIN_,L UNSTRESSEE,THICKNESS
p : POISSON'5 RATIO

i_'_' • ASSUN_.S POISSON'S RATIO = 0.S SO IqtESSUIE I$ TIANSMITT£D AS IF SEAL WERE A FLUID :

.',

t"

:r
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STE? 7 - DETERMItIESTATICLOADS,STRESSES,AND DEFORMATIONS _

• "
2

Go/NoGo criteria:

If stressesor deformationsare eithertoo low or too high, i

returnto Ste_r_and re-designseal. Typicalcriteriafor accept- 4
V

able stressesshouldbe compiled, Lackingthiscompilation,use
-.c.

theserulesof thumb: ,:.

0"2_leld<y_ < o.goultlmate '_

5% ( ' < 40% "

:i

0
i i i i _ __ iii ii
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Page l of 7 i

STEP 8 - CALCULATEALL FRACTUREPOTENTIALSEXCEPTFATIGUE ,,

MAKE/DON'TMAKE CRITERIA: )
!

Make in a1"lcases except:

Omit A,B,F,&Hfor staticseals
!
i

Omit E if fluid is inert _,

; Omit G if pressureis less than300 psi ,,

Inputs Required: ,;

Failure criteria for each mode

Dimensions,massesand velocitiesof parts

:.' Thermaland mechanicalpropertiesof materials
, |

F

Available methods:

A. CalculateEnergyto be Absorbed

If all the kinetic energy of the moving element is to be

: absorbed by the seal, J
. MV2

where: E - totalkineticenergy

M - movingmass

V = velocityat instantof contact

If a bumperor stopabsorbssome of the energy,then the

fractionof the totalabsorbedby the stop, EA, must be
estimated and subtracted from the total:

.MV2 - EA
E --2--

To obtain V, a detailed kinematic analysls is necessary in the

absenceof empirical data. If such an analysts is unwarranted,

then an approximation may be madeas follows:

V

Where: s = stroke i
a_

t = response time

• )
6-72
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Page 2 of 7

.; STEP8 - CALCULATEALL FRACTUREPOTENTIALSEXCEPTFATIGUE t
,-w_:

, Available methods (continued): " f
Or, alternatlvely: t_

Ff = frictionforce L

Fp = net pressure- area force )i
(usecorrectsign) (S = stroke

R_, CalculateSpecificEnergyper Unit Volumeof Seal

=E
Sv _ Where: Vs - volumeof sealabsorbingenergy

Sv shouldnot exceedsome reasonablefractionof the impact
toughnessof the seal_aterial; when no other data available,

use 1/3.

Determinationof the actur_fracturepotentialunderrapidly

applied loads is complexand involves vtscoe'esttc and/or stress

wave analysls(seeReferences36 and 13, respectively,for ._

summaries).

A relatlvemeasureof the suitabilityof materialfor impact

service is (14): i

Where: I - figureof merit,resistanceto imp_Jct L_ !_

St - impact toughness '_
-yteld stress at high strain rates }_.,

_Y - Hodulus of Elasticity :[

D - ductt 1t ty i

C. Celculate Thermal t),,radtentsAcross Seal Secttons ;t

The mxtmum posstble the_l gr_.dtent should be estimated or

('_ aMlyttcally determtmKI by heat transfer calculat'ions. Usually -_
__ i i • _ji • ,e
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Pa9e 3 of 7
STEP8 - CALCULATE/_LLFRACTUREPOTENTIALEXCEPTFATIGUE

Availablemethods(continued): -)

bhls lattercourseis a sizeableoperationinvolvlngheat

transfernetworkcalculations.

D. CalculateThermalShock Potentialand ThermalStresses

Fourparametricrelationsto be usedas figuresof merit for

resistanceof a ductilematerialto thermalsheck and two

relationsfor a brittlematerla]are (Reference15):

C

i, elD " =

• . _f(l_l_)
e2D = EQ

O3D= -._-O'end

e4D:k )

Af

= Poisson's ratio

= coefficientof thermalexpansion

_f = fracturestress(true stressat rupture)

E = mcdulu,;of elasticity

_nd = endurancestress

k = thermalconductlvity

For brittlematerialstilerelationsare:

%(I-_)
BIB = r

'r . Ee

:,_,,. e_ : k-_..

:'; . where: rb --breaking,stress(apparentstressat rupture)

,vI, ._
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STEP 8 - CALCULATEALL FRACTUREPOTENTIALSEXCEPTFATIGUE _4 "I'

i. Availablemethods(continued): "

The above relationsare usefulfor comparingthe relative---:',,,:,,_ T;
of candidatematerials,but in some casesan absolutemeasureof )',

suitabilityis desiredso relationsare neededto predictiF,.rmal _il
shockfailure. For example,in a thincirculardisc, the 'adial I

temperaturegradient,AT,, whichwill causs fractureis(Reference16): II
j,

,',Tf = _'e 2.0 + 4a-_hk- 0.5e "a-'h-"

where: cf = fracturestress

= Poisson'sratio

E = Young'smodulus

= coefficientof thermeiexpansion

k = thermalconductivity

a --""'_Ius.,,- n_,,.A!Sc.

,._-" h = surfaceheat transfercoefficient

E. DetermineEnvlronmentalStress-CracklnqPotential

Emp_'-Ica]data are neededto estimatethe potentialfor environ-

mentallyinducedstress-cracking.Such data are usuallyplottedas

tlme-to-fallureversusstress3eve]with temperaturea'sa parameter
as shownbelow: '"

5L

" T = TI °F __,'"

'_ T T2 OF ._:

T T3 °F "_

mL

TIME TO FAILURE

_

.... , i_'_
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STEP8 - CALCULATEALL FRACTUREPOTENTIALSEXCEPTFATIGUE .I

'I iAvailablemethods(continued): _ " _i

For computercalculations,the_edata musL be _ ....._ " I_n_:,eueither i _.

as tablesor else curve-fittlng_cnniques used to obtainthe I:

equationsand constants. Note thatthe stressinvolvedis the

maximumsurfacestress,not the averagebulk stressunlessthe

empiricaldataspecificallyapply to the same configurationmd

: loadas the candidatesealand load (Reference20):

C

F. CalculateSeparationTearln_Potential 7
?

Generallytwo conditionsmust be met to tear a seal:

) l) The sealmust adhereto two separatingelementswith

_ sufficientpeel strengthto exceedthe load necessary

; I to causetearing,and

-;I 2) The mechanicalelementsmust separateunder an actuation
! I

I _ forcegreat enoughto cause tearing.

_ For progressiveor cyclictearingin naturalrubberand some )

I synthetics,a parameter,G, called"cut-_rowthconstant"has been

definedas(Reference!2):i

where: T = tearingenergy

x = empiricalexponentrangingfrom 2 to 4

dN
: _ = slopeof curveof numberof cyclesversuscut depth

,i, In somerubbercompoundsthe "constant"G varieswith rate of cycling

i belowa limitingvalue (Reference2_):
.i

)
J
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STEP8 - CALCULATEALL FRACTUREPOTEP"IALEXCEPTFATIGUE

Available methods (continued):

t The numberof cycles to failure, N, is:
.(

N = G

where: K = constant (which varies probably from 2 to 3)

*, co - initialcut depth
E = strainenergyper unit volume

Y = empiricalexponentrangingfrom 2 to 4

{_i X = empiricalexponentrangingfrom l to 3

J;

More complexexpressionshave beenobtainedfor N but all require
empiricaldata to evaluatethe constantsand exponents. The naturally

occurringmaterialcut dept_sin rubbershavebeen foundto be in the

rangeof l to 3 x lO"3 cm (Reference21):

C Polymerswill tear catastrophically(N = l) as Fast as the tear

energyis put intothe material.

G. BetermlneThe Potentialfor De-PressurizationTearing

At _he presenttime,methodshavenot been developedto

determinethisfailurepotential. However.it ha; beeh reported

(Ref.219)thatbubbleswill grow in crosslinkedelastomer_if

suddevzdepressurizationoccursfrom a criticalpressurePc v_,ere:

Pc _ 2.5G

where: G = shear modulusof the elastomer, wh,ch is about E/3 for
rubber.

A more comprehensiveanalyslsis given in Refprence220.

0
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STEP8 - CALCULATEALL FRACTUREPOTENTIALEXCEPT,'ATIGUE 1 '
I !

Avail,_blemethods(continued): I
i,
(

• H. Calculate Shear Cu,ttln 9 Potential !,;

Shearcuttingfailurewill occurwhen the shear strengthof the
J

material is exceeded. An approximate criterion for cutting is: i_
!.

' F >1

where: F = forcep"'"unlt length

t = thickness

' Ss = shearstrength
w

I. Determine Wire..Dra_.wwin9 Pctentia_

At the presenttime thereis no analyticalmethodfor determining

the resistance of a seal to loc_.lized e_ _sive wear, which cuts a

thingroovein the seal. Empiricalcorrelationsfor a given gas

probablywouid be based on the paran_e'_erst_p,tem.Jerature. )

J. DetermineExtrusionPotential

The parametersgoverningextrusionunder slowlyappliedpressure

are ultimate_ens<_estrenoth,materialth_ kness,creepmodulus,

tensilemodulus=and the _imensions3; the hole (diameter,entry

radius,etc.). Seneralizedsolutionsare very complexso empirical

dataare needed.

Go/NoGo criteria:

Compareresultswith tailurecriter,,and returnto Ste_2_rL1_
if criter!aindicatesfailure.

6-78
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: STEP9 - CALCULATEEXPANSION/CONTRACTIONAND THERMALSTRESSES
_ AT TEMPERATUREEXTREMES

;_ e:- MAKE/DON_[MAKE CRITERIA:

_,-._ Make in all caseswher,_,extremetemperaturesmay be reached.
: 9":. As a ruleof thumb,make if extremetemperaturesdepartfrom the

.",_. nominalby more than50°R.

, InputsRequired:

D_._ensionsof parts

• Thermalstressequationsin program

Thermalpropertiesof materials

Stressvs strainand temperaturedataon materials

Safetymarginsor failurecriteria

AvailableMethods:

• ' Expansion/contractionof simplestructuralshapescan be calcu-

latedusingthe equationslistedin Steo_6._
'V

Many thermal stress problems have been solved and solutions may be

found in texts on the subject and/or by use of computer programs, Two

situations give rise to thermal stresses: (1) temperature gradients

and (2) two or more mutually constraining memberswith different coef-

ficients of t,,ermal expansion which undergo a temperature changefrom

the relaxedstatetemperature(atwhich no 1oadlngo_curs). I:

' In generalthe inducedthermalstress,aT, is:

where: = = coefficientof thermalexpansion

£ = dimension

(-._ 41 = change tn dimension actually occur, lng
j \ :

i
_ m
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: I STEP9 - CALCULATEEXPANSION/CONTRACTIONAND THERMALSTRESSES
AT TEKPERATUREEXTREMES

_ AvailableMethods(continued):

For quickchecksof elastic-rangestressesinducedby radialther-

• mal gradientsin ring-shapedmembersuse the relation:

Max I-_

Where: _ = maximumhoopstressin outerfiberMax

= coefficientof thermalexpansion

E = modulusof elasticity

aT = maximumradialtemperaturesgra-
dient

= Polsson'sratio

A ctrcular dtsc whtch Is full constrained at its outer edge and

has a t_mperaturegradient,AT, inducedfromone face to the other de-

velopsa stressof:

• _E _T0"=
2 (l'_)

If the temperaturein the above disc is uniformbutAT above the

relaxedstatetemperature,the stressis:

= c_EAT
l-'v

A bar, suchas a valvestem,which is fullyconstrainedlengthwise

whileundergoinga uniformtemperatureriseAT throughoutwill be

stressedto:

) _E ATor=

The most commoncase in poppetvalvesis where the stem/poppetas-
t

semblyand the sealare of differentmaterialsand/orat differenttemp-

eraturesthanthe body so thermalstressesare induced. If It may be

assumedthat eachof thesethreeelementsis at a uniformtemperature

and eachis uniformIn cross-sectionalarea, then the thermallyInduc__

loadchangecarriedby the seam,AF, is approximately: )

6-80
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STEP 9 - CALCULATEEXPANSION/CONTRACTIONAND THERMALSTRESSES
AT TEMPERATUREEXTREMES

i _AvailableMethods(continued):

AF =_el LI AT I + u2L2A_-_3(LI + L2)AT3
I 1 1

Where: subscrXpt1 refersto seal parameters

subscript2 refersto stem/poppetassemblypara-
meters

L = lengthof elementundergoingthermalex-
: pansionor contraction

AT = temperaturedifferenceaboveor below
relaxedstate temperature

E =modulus of elasticityat the existing
• temperature

A = cross-sectionalareacarryingload

_ The resultingstressincreasein the sealmust be calculatedusing the

methodsin Step7.

It is importantto rememberthatthe magnitudeof thermally-

inducedstressesand strainscan be very muchaffectedby the geometric

propor¢lons.For example,the short,thine]ement"x" in the sketch

be]ow can be highlystressedc_,.paredto the ]ongerand thickermembers

(Reference 224). *

l,

If ATa.x Is the differenceIn temperaturebetweenthe outermembers

and the center memberand the cross-secttona] area of x ts very much
smaller than that of the other members, then the thermally-Induced

stress (tn the elasttc range) ts: _.

La .<

o _.,L_x Ex-aATa.x
ii II I I I ,, I
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.. Page 4 of 4
f

'i STEP 9 - CALCULATEEXPANSION/CONTRACTIONAND THERMALSTRESSES
' AT TEMPERATUREEXTREMES
+

d '

Go/NoGo Criteria:

Compareresultsto marginsor criteriaand returnto Step__f

marginsare not presentor criterianot met.

J

)

6-82

I

I!I m m

1974005081-295



• _ Page 1 of 4

STEPiG - CALCULATELEAKAAT NOMINALANDEXTREMETEMPERATURES

tl,

_i_ MAKI:/,DON'T HAKF CRTT_RTA
,j , . ............

C

Make in all cases unless leakage is not of interest.
/4

," Inputs Required:

/ ,t Fluidconditionsand properties(vicosityratioof specificheats
_ and gas constant)

:_ Sealconfigurationwith dimensionsand finishes

_ Changesin dimensionswith temperature

i Stressand stresschangewith temperatureand mismatchmaterial
. hardness

I"

_ AvailableMethods(References1,2,3,4,5,6,7,8):

_ L = 713, Where: L = mass leakagerate
c T = conductance
W

B = flow potent';alparameter

= c_HXF
:- _Y

s Where: C = characteristicdimensionand coefficients
•_ of seal

• H = hardness

F = a parameterexpressingthe surfacefin;sh

_s = sealingstress

x,y = exponents

The flow potentialparameter,B, must be calculatedfor the specific

conditionsof interestand the fluid properties.Table 6-9 listsexpres-

sionsfor B underdifferentflowregimes.

ParameterC dependsupon the configurationand the flow regime. A ._ !

comprehensivetableof C as a functionof configurationand flow regimehas

not been computed, the generalcase for molecularflowis:

C = I Where: Z = perimeterof flowpath

7L d2, A = crosssectionareaof
_ flowpath

o _ = leng_ of flowpath0 ,
_k ' -- i ,

J

m m Ill
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STEP10 - CALCULATELEAKAGEAT NOMINALAND EXTREMETEMPERATURES

_" Available methods (continued) :

" Reference80 reportsfor molecularflow througha flatpoppet• (annulus):

_i 2 h2DC T Where: h = effectiveseparationbetween
: I ands
_ D = mean diameterof lands
't

- W - width of lands
"

_r-' 3.1.4159

i Reference1 reportsfor isothermallaminarflowthrougha flat

poppet(annulus):

C = 2_h3 Where: _ = 3.14159
ro

anm h = effectlveseparationbetween
ri lands

_n = naturallogarithm

ro = outsideradiusof lands

ri = insideradiusof lands

For isothermalflow througha longitudinalannulus(Reference221)

as in a rod or glandseal:

l

_D b3 l + 1.5
C • Where: _ = 3.14159

D = outer diameter

b = clearance(annulus
width)

• eccentricity

= length of path

i
Hardness, H, ts raised to somepower whfch is determined emNr-

tcally. For example, the exponent is 3025 for flat gaskets of Buna-N !

rubber (Reference 6)

i ii . i ii i i i
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: STEP 10 - CALCULATELEAKAGEAT NOMINALAND EXTREMETEMPERATURES

Availablemethods(continued):

•
F is the arithmeticaverageof the peak-to-valley(PTI'Iheights

of the mating surfaces (Ref 23).°,

, .S1 S2

where:
"" )

S = surfacearea

; Y = heightof asperity peak-to-valley

Su_)scriptI = seat
..

: Subscript2 = seal

x

It has been reported that vessels which have been in contact

with a liquidwill showno leakagebelow10-7 scc/sec.If a slug of )

• surface-w_ttingliquidenters a roundpassageof uniformdiameter,

:, displacementof the liquidfrom the nassagerequiresa pressure

t differential,AP, of (Ref55):
i

t

AP -- 4p c_s_

I Where: o,= surfaceto tensionat the Ifquid-gasinterface

i @ - llquld-to-walI contactangle

I d = diameterof passage

""!

Go/No Go criteria: Leakrate must not exceedcriteria. If it doesexceedit

returnto Ste_r Step(_

3
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Page 1 of 6
_TEPII - CALCULATESET ANDSTRESSRELAXATIONAS FuNcTIONSOF TIME

ii ii •

MAKE/DON'TMAKE CRITERIA:

Make for any case in which sealremainsloadedfor extendedperiods.

As a ruleof thumb,make if seal is loadedfor periodsof longerthanten

minutesor if the sum of all loadedperiodsexceedsfiftypercentof the

totaltime (50%duty cycle).

InputsRequired:

Stressesor strainsin seal

Stress-strainpropertiesof materialincludingcreepand relaxationas
functionsof timeand temperature

AvailableMethods:

A. Set

Empiricaldataare neededto calculatethe set which a sealwill

take. Stress-strain-timesurfacesare requiredsuch as shownbelow:

One suchsurfaceis neededfor eachtemperature.

I

#

STRESS

f
LOG STRAIN "_"

LOG TIME ,_

SET _

Strain vs Stress vs Time Surface, ShowingCreep Path
....... i i ,i | i i _ m
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,_ Page 2 of 6
: STEP II - CALCULATESET AND STRESSRELAXATIONAS FUNCTIONSOF TIME

Avai1_ble_lethods(continued):

To be usedon computerprogramsthe empiricaldatamust be reduced

eitherto tablesor equations. Creepresponseof the materialis character-

izedby the CreepCompliance J(t):
/

J(t) _ _ , where ¢(t) - strainas a functlonof time

O l stress

%

• The super positionmethod leads to tensilecreep equationsof the

: form (Reference14 and 36):

( = Ce + f, + (i + ¢,,p c c

who_o....._,_.; -- totalsLrdln

( = initialelasticstrain
e

% I

(p = initialplasticstrain

' = transientcreepstraineC

II

(c -- constant(minimumrate) creepstrain

l.Jhichleads to:

O"

E = _" kl=P + k2 (1_e-qt)m + k3t n

where: • = stress 1

. E = modulus of elasticity
e = 2.71_

:

t = time

kl,k2,k3 = empiricalconstants

p,q,m,n, = empiricalexponents

6-88
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Page 3 of 6

STEP 11 - CALCULATESET AND STRESSREUU(ATIONAS FUNCTIONSOF TIME

AvailableMethods(contlnued):

A]I of the abovestrainsare consideredto be recoverab_,e,in

time,exceptfor the secondand fourthterms. Hence,the tensile

set is:

S = klcP + k3tan

A specialmode!of creepcalled"there1 ratchetlng"may be

inducedby temperaturecyclingif the sum of the mechanicalplus

the thermalstressesexceedstheyic_.dstress. A relationfor the

thresholdof thermalratchetinghas been developedfor a st_;uci.ure

consistingof two parallelmembersmade of the samematerial,A and

B, whichsupporttwo parallelrigid plates(Ref.15). Ratcheting

wilI occurwhen:

E _T
a >ay = 2"+A/B + B/_

Where: _ = total imposedstress(loadplusthermalstress)

_ _y = yleld stre_s i

" E = Modulusof Elasticity

6 = coefficient_f thermalexpansion

AT = temperaturerise aboveor below _he "zerothermal
stress"temperature

A = cross-sectionalareaof "A"

B = cross-sectionalareaof "B"

For thisstructure,thermalratchetlngw111 be a maximumwhen
#

A = O. The strainper thermalcycle is:

L

Where: aA,aB • peakstressesin A and B

For zero themal ratchetlng of a pressurized cylinder In the ,
presence of a ltnear thermal gradient (Ref.13):

• I0
IL

6 -89
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STEP II - CALCULATESET AND STRESSRELAXATIONAS FUNCTIONSOF TIME

e-

,ou,= ,,,=thuus (continued):
)

2

_t = _ for 0< -P- <0,5
_p _

._ Y
t

r

( where: _t = thermalstress

• = yield stress
j Y
( a = pressurestres_P

B. Relaxation

-, The sameempirically established surfaces used for set will

yield relaxationdata.

)

• I STRESS

LOG TIME

LOG STRAIN
STRESSDECREASE

Strains vs Stress as a Function of Time,
ShowingStress Relaxation _)

., 6-90

1974005081-303



: Page 5 of 6

"I"STEP 11 - CALCULATESET AND STRESSRELPXATIONAS FUNCTIONSOF TIME
J

IAvailableMethods(continued):
:, • Relaxationbehaviorof a materialIs characterizedby the

RelaxationMndulus,E(t),

Where: E(t) _ _-;-T;" , where _(t)= loadas a functionof time

_°_'_° Ao = originalarea

_ = changein length

_o = originallength

Stre_srelaxationin polymersshouldbe calculatedfrom

; empiricald.La _;hcneverpossible. A relationfor th_ shorttime

stressrelaxationis (Ref.!4):

_ k1

[kI + k2 (l-e"qt) + k_t]

where: =/=i = ratioof stressat time t to initialstress
n = empiricalexponent

• kl,k2,k3 = empiricalconstants
: • = 2.718

, q = empiricalexponent

•! t = time

If empiricaldataare availableonly for creepand not for stress

; relaxation, and these data refer to viscoelastic creep whtch proceeds as

' a homogeneousdeformation of an unchangedstructure, then stress re-

laxation can be derivedfrom the creepdata. For a slmpleb_r in tension !

such as a valve stem, the transformation equation is very simple "

| (Ref. 37):

do . EO
l _ = ¢C

i i

i _uni
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Page 6 of 6

STEPII - CALCULATESET AND STRESSRELAXATIO,_AS FUNCTIONSOF TIME
w

_.u,,...,:,.,:_.uu_continued :

where: _ = stress

t = time

_' E = Modulusof Elasticity
o

- cc = creepstrainrate

Go/NoGo Criteria:

Not app]icable
L

-)

?

|

F

, , ...... m
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. STEP 12 - LEAKAGEVS TIME

5 ,'-. MAKE/DON'TMAKE CRITERIA:
r

(_)Make inall cases if Step resultsindicatea changein seal-

_- in§ stresswith time.

' InputsRequired:

Same as Step@
f

" (_)Resultsof Step

AvailableMethods:

Use method of Step@

GollloGo Criteria:
q

•_' Proceedto Step@if criteriamet. If not, returnto Step@

i :

c
m,, m ii i _
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Page 1 of 2

STEP 13 - CALCULATELEAKAGEVS CONTAMINATION

MA_F/nnN'THAKECR''_n'^'_,,_,,,,,

_' ' Make if particulatecontaminationis possible.

InputsRequired:

2 Particlepopulationdata (sizevs number).

®; Same as Step

AvailableHethods:

A numberof simplifyingassumptionsare usuallynecessaryto

make the problemsolutionpracticablefor the case of polymerlcseals:

l) All particlesare much harderthan the seal and so may be

treatedas non-deformable.

, 2) Particlesare eitheruniformlydistributedthroughthe

fluid,or are generatedlocallyat a knownrate.

3) The probabilityof particlesbeingtrappedon the sealcan _
, be calculatedin termsof size,numberand locationon seal.

Basedon theseassumptions,calculationsare made resultingin

a model of the "worstcase"conditionsof particleson the seal,then

SteplO is repeatedbut with the conductancealteredto accountfor

the presenceof the particles.

Alternatively,the StepOcalculations may be madewith various
sizeand numberof particleslocatedat variousplaceson the seal.

These resultsare parametriconlyand expressthe "leakagesensitivity"

of the sealto contaminationbut don't revealwhat the likelyleak
rate increasewill be.

i

If particlegenerationthroughsealwear is a concern,calculate

the volumeof wear as belowin Step _'_ and maximumparticlesize from

tileexpression(Reference26).

d = 6EWab

. v ay _ ]
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STEP 13 - CALCULATELEAKAGEVS CONTAMINATION

•' __ •

_- AvallableMethods(contlnued):

e,

"_'. where: d = diameter

_. E:ModulusofE1astlclty
.. Wab = Workof adhesionbetweenthe two surfaces
" v = Poisson's Ratio

ay = normalcompressivestress

I Go-No-GoCriteria:

i Sameas Step 0"

r-

0
,, ,, _
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: STEP14 - CALCULATESTATICFATIGUETIME-TO-RUPTUREi

• P IT •M_V_mn_'T MAw _R,,ERIA.

' Make if sealremainshighlyloadedfor extendedperiods. As a rule of

_humb,make if:

times> I, where time is in hours

/ \_,break/

Inputs Required:
i

Seal stressesincludingstressrelaxationfromStep 0
Staticfatiguedata in materials
Environmentand life cyclefrom Step(_
Aliowablemarginof time

AvailableMethods:

Empiricaldatamust be used to determineif the existantloadswill

causefractureat the prevailingtemperaturebeforethe requiredtime

periodhas elapsed. The requiredtime periodshouldincludea margin

beyondthe actualexpectedtime underload.

• A relationwhichallowsempiricalstaticfatiguedata at a given

stresslevelto be extrapolatedto othertemperatures(13, 14, 18):

log tr = _ - C

Where: tr = :imeto rupture,hr
P = empiricalconstant

T = absolutetemperature,°R

C = empiricalconstant(usually20)

A similarapproachcan be takenwith a more accuratebut more

cumbersomerelation(san_references):

T-Ta
log tr = -F-" + TM ta

Where:T - temperature,°F

Ta - empiricalconstant

ta = empiricalconstant

i i . i .

6-96
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: STEP ]4 - CALCULATESTATICFATIGUETIME-TO-RUPTURE
%

R ; "
P "_ Go/NoGo Criteria:

f _

If failureis predicted,returnto StepQ. If not,go on to
nextstep./

I

.... i

'1 j 6-97
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STEP 15 - CALCULATECYCLICFATIGUECYCLES-TO-RUPTURE

c MAKE/DON'I_KE CRITERIA:

.
_ Make if high cyclelife is requiredand ther_ is reasonto sus-

: pectfatiguemay occur. As a rule of thumb,make if lifecycle

includes_re thanlO,O00cyclesin the elasticstressrange,more

thanlO0 cyclesin the plasticstressrange,or more than lO cycles

_ at above 0.8 of the breakingstress.
..

" InputsRequired:

Stresscyclingand environmentdata from Steps_nd(_i I

V %..#

Empiricalfatiguedataon materials

AvailableMethods:

EmpiricalFatiguedata are usuallyplottedas "S-N"curveswhich

she=,the numberof cyclesto failureas a functionof stresslevel;to

be completethesecurvesshouldhaveas other parameterstemperature,

chemicalenvironment,etc. When handcalculationsare made, thesE, .
curvescan be used directlyor with cross-plottingto predictfailure.

When computerizedcalculationsare made, eithertablesmust be entered

or the data reducedto equationform. Severalof the equationforms

hdvebeendeterminedfor differenttypesof fatigue.Extendeddiscussions

are found in References15 and 36.

For alternatingstrainswhichare entirelywithinthe elastic

_ range,the cycle lifeNf is (15):

: (A_) Y _' " Nf = !

where: ACe = strainrange per cycle
E = elasticmodulus

y = empiricalexponent

G - empiricalconstant

Hi i

6-98
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' STEP15 - CALCULATECYCLICFATIGUECYCLES-TO-RUPTURE

' L;_ __.' Available Methods (continued) :

,_
_. ., In order to esttmate the variation tn cycle life wtth stress
.,' ,,

k level in the elastic range, use the relation (Reference 15):

/ 1

..- _ Nf Nend _end

.!

•: where: Nend= endurancecycle ltfe
':' i

i o = cyclic stress ,
! = _.ndurancestress

°end

A closed solution ts obtained only tf x ts knownor tf the

• fracture stress, o_, Is measuredso y can be approxln_ted as above.

_- _ Larger amplitude strains which Induce both elastic and plastic

deformations tnvolve an tmpltcit expression for Nf tn terms of the

: < ._ total strain range, Ate+p:

"i

"i A,e+p., "NZ+ _
• where: H = ernpJrical constant

.'. Z = empirical exponent ,

y = -0.083 -0.1.66 log (_,.-_,
• 0.9

.. o.82,D1- 82 )
' Gru i

[ io,,,]
where: .f = fracture stress

0 ou - ultimate stress , m _, m | m

,, m , , im •

6-99
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i STEP 15 - CALCULATECYCLICFATIGUECYCLES-TO-RUPTURE

AvailableMethods(continued):

• Sometimesthe cycle lifeis expressedas a functionof only

., the plasticstrainCp:

Nf = Kc;

The followinghas been reportedfor fluorocarbons(Ref.223):

:

Temperature

Material Room +200°F

TFE epN0"203 = 1.25 cpN0"433 = 2

FEP cpN0"084 = l epN0"044 = 1

,. In low-cyclefatigue,below 10,000cycles,the plasticstrain

per cycleis the dominantparameter,whileabove thatflgure,elas-

tic strainsbegin to be more importantthanbelow it but totalstrain _)
• is the most significantparameter(15). When fatigueis due to a

combinationof mechanlcalplus thermalstresscyclingand the strains

(or stresses)can be describedby lineardifferentialequations,the

effectivetotal strain,_, (or stress)is simplythe algebraicsum

'_ : (i.e.,superpositioncan be used) (15):

_= CM+et

. where: eM =mechanicallyinducedstrains

ct "thermally inducedstrains _.
•

" Spa111ngfatiguellfe Is markedlyloaddependentbeing inverse !,

' _ to the cube of the load and inverse to the ninth power of the stress

; (lg). Experimental data are required.
ibm i J ml

: Go/NoGo Criteria:

' _ If failureindicated,returnto Step(_.
i

I
)

i iiii,i
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" Page 1 of 4

_ STEP 16 - CALCULATEWEAR/EROS!ONRATE

_., MAKE/DON'TMAKE CRITERIA:

,_- Make in all casesexceptfor sealsrequit'Ingvery low cycle llfe

_" and/oroperatingat very low stresslevels.

InputsRequired:

Sealdimensionsand loads

Wearcoefficientsfor materials

S1idlngdistancesand velocities

A11owablewear criteria

AvailableMethods:

Wear predictionis largelyan empiricalmatterwhich is specific

to the materials,surfaceconditions,loadsand rubbingspeeds.

_, A. AbrasiveWear

The volumetricabrasivewear rateof the s-fterof the

twomaterials,VI, is approximately(References19, 26,and27):

vI - KW__L
3P1

where: K - a constant(Note: sonx_timsthis constantis combined
wlth the divisor 3. which is a propertyof the material
comblnation.)

W - load or apparentstress

k - s11dingdistance

PI " indentationhardnessof the softermaterial ,_
\

The hardermaterials'wear rate,VE,.willbe:

P P1. 2

where: P2 " indentation hardness of harder material _

0
mm ii ii i __
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, STEP 16 - CALCULATEWEAR/EROSIONRATE
'4.

AvailableMethods(continued_:

,
To somedegreethe wear rate (or K) will be determinedby the type

• of asperitydeformation(elasticor plastic). A plasticityindex,¢,

has beensuggested.

E'/ ¢ iT-
where: E' = an elasticconstant

H : hardness

a = standarddeviationof the asperityheights

J R = averageradiusof the asperitytips

For valuesof ¢ belowabout 0.6,the deformationsare largelyelastic

and the wear ratesare low,whileabove 1.0, the deformationsare

largelyplasticand the wear ratechigher.

Polymersapparentlyexperienceelasticwear. PTFEmoldingswear

at rateswhichare approximatelyproportionalto the modulusof elas-
\,

ticityand inverselyproportionalto theyield strain(Reference26).

Use of the PV relationto estimatethe wear of Teflonis recom- _)
• mended (Reference30):

t = KPVT

i where: t = wear, in.
: K = wear factor

' P = pressure,psi

V = velocity,ft/min.

T = time,hr.

For pureTFE, K is givenas 2.5 x I0"7, and for FEP as greaterthan

5 x lO"7. Valuesof K are also givenfor severalfilledTeflon

materials,and PV limitsare specified.

:i B. Adhesive Wear

The equationfor adhesivewear Is the sameas for

abrasivebut the constant,K, is different. There is a

(theoretical)minimumload,Lmin, belowwhich adhesivewear
particleswill not be formed(Referencelg):

C'W2
Lmin = -li---

6-102
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_, Page 3 of 4
/ STEP 16 - CALCULATEWEAR/EROSIONRATE

_.I;_. Available_ethods(continued)"
3

_' where: C' = a constant

_ W = workof adhesion

P = penetrationhardness

! _, C. ErosiveWear

_i 0
" _ The volumetrlcrate nf erosivewear,V is (Reference31):

? _ where: a = absorptioncoefHcient
I = powerof stream

A = area

Se = erosionstrength

_, Apparentlythe "erosionstrength",Se, is proPortlonalto strain
". ; energ)but the p:'oportionalityfactorand absorptioncoefficientmust

V,

be determined empirically.

• _ D. CorrosiveWear

, Rate equationswhichdescribethe thicknessof corrosion

layer,ay, whichcan be builtup in time,t, fall Into three

categories(References26 and 28):

I. Linear, Ay = K,t + K2

• 2. Logarithmic,ay = K3 Io_ (K4t+ K5)

• 3. Parabolic, Ay2 , K6t + K7

where all K's are empiricalconstants 1

If the corrosionIs removedabraslvelyby, a hlghly
j ,"

loaded point, the depth of wear per pass, h, approximately _

(Reference 19): -'
kx :;

h = T _'

where: k • empiricalconstant(probably10.4 to 10"5 on metals)

x -sItdtng distance
ii

d 6-103
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STEP 16 - CALCULATEWEAR/EROSIONRATE

_. Availablemethods(continued):

? ' E. "Zero"Wear

It may be possibleto predictcohditionswhich will lead

,_ to essentiallyzeroabrasive/adhesivewear (Reference33).
/ The criterionis:

Ss _< GY,

where: Ss = shearstress
N = numberof passes

" G = stressconcentrationfactor

Y = yield pointi_ shear

GenerallyG is either0.20 or 0.54and does not appearto be a

continuousfunction. G equals0.20for systems(contact

surfacesand lubricationcombination)with a highsusceptibility

of materialtransfer. G equal 0.54for systemsin which

transferis unlikely;for many plasticsagainst302 stainless

steel,G = 0.54.

Shear stress, Ss, is a function of the geometry of the
matingsurfaces. For flatagainstflat,Journalbearings, .

I and balls_n sockets,
/

f2
Ss =Kqo Vl/4+

where: K = stressconcentrationfactor

qo " bearing pressure

: f = coefflclentof friction

The stressconcentrationfactormay be takenas 2 If a11

cornersare well rounded. Sharpcornerscan leadto valuesof

K as highas 1000. See a1_oReference34.
j l

Go/NoGo Criteria:

If wear rateor totalexceedswear criteria,returnto Step@.
)

& =, .
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: STEP17 - :ALCdLATELEAKAG'E--INCREASEDUE TO WEAR/EROSION

I:
}.

MAKE/DON'T_AKECRITERIA:

Make if wear/erosion calculeted in Seep@

/ InputsRequired:

- _ Resultsof Step

Criteria for acceptable leakage increase due to wear/erosion.
J L . n _. ,, _

AvailableMethods:

: RepeatStep(_@and@but with new Inputsfrom Step

Go/NoGo Criteria:

,. Returnto Step_f criterianot met.

, [,

6-105 _,
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STEP _,8- CALCULATEFRICTIONLOADS

MAKE/DON'TMAKE CRITERIA:

Make if actuatorforceoutputismarginalor if loadsmust be

knownaccuratelyto predictresponse.

_ m _ n i

/ InputsRequired:

Empir,_alfrictioncoefficientdata for materialcombinations

Rubbing velocities and loads or stresses

Envtrunment Including temperature and degree of lubrication
present

Criteriafor acceptablefrictionforces
K

L

AvailableMethods:

Frictionc)Iculatlonsare all basedon emplrlcaidata exceptfor

a few theoretlcalmethodswhichyield poor accuracy.

A relationwhich holdsfor materialssuch as Teflon is (References

• Ig and 26):

F = cPZ

where: F = kineticfrictionforce

c = emplrlcalconstant
t

P = forcevectormagnitude,normalto surface

• Z = empiricalexponent,usuallybetween2/3 and 1

Kineticfrictionfor somematerialcombinationsis dependenton
(

the slidingspeed:

Fk = Pdv'Y

where: d _ empiricalconstant

v = slidingspeed

y = empiricalexponent

Where severalcombinationsof surfaces(I to n) are simultanously

}n contactIn a complexdevice,the totalfrictionalforce Is the )
algebraicsum of the individualforcesof the surfaces:

6-106
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..._ STEP 18 - CALCUL_.TEFRICTIONLOADS

_; AvailableMe*=hods(continued):

v F = F1 + F2 + F3 . . . Fn

,:.:,

._ _ Since the normal forcemay not be the samefor each incrementof
! "" area, the local"pressure"is usedas the basisof calculation:

-_ qnz., .,.; Fn = An Cn

i where: An = contactarea for materialcombinationn

_!, C = empiricalconstantfor materialcombinationn
-, _. n

_ qn = averagecompressivestressoverarea An

_; Zn = empiricalexponent for materialcombinationn

:.- Staticfrictionmay be a functionof "timeof stick";for very

shorttimes it is essentlallythe sameas kineticfrictionbut increases

rapidlyas the timeof stick increases,then,asymptoticallyapproaches

_" the familiarstaticfrictionvalue. Mathematically,the staticfriction

• _ force,Fs, is (Reference19):

( :)_, Fs = fk + kt P

[_ where: fk = kineticfrictioncoefficient

._
_ k = empiricalconstant

_;: ts • timeof stick

x = empiricalexponent

i"

f _

't,

.... J i ii ii _
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STEP 18 - CALCULATEFRICTIONLO_S

m

._ AvailableMethods(continued):

mn n i

/ STATICFRET_ON

; z
o

a¢
I.L.

p-

FRICTION,

TIME OF STICK

Reducedshear strength and yield strength have been cited as
" _)possibleresultsof fluidinteractionswhich _uld causean increase

in frictionexpressedas (Reference36):

F = ("S +l_)sL_Payoy /

where: _ = fractionof sealarea not lubricated

S = shear strengthof _l_er

oy = yieldstrengthof _l_er

SL = shearstrengthof lubricatingfilm

Go/NoGo Criteria:
i

Return to Step @ tf allowable friction force criteria are not met.

i)
!

i 6-108 '
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STEP 19 - ITERATE AS NECESSARY TO OPTIMIZE

MAKE/DON'T MAKE CRITERIA:

Make if optimization is desired.

Z

/_ Inputs Required:

_ Criteria of acceptability of design

Procedure for calculating new values for new iteration

f

(
_ Available Methods:

Not applicable

Go/No Go Criteria:

Return to Step Q if criteria not met.

)
|

3

, | .i i i i IL IIi i ._

6-109 1
II _ ii

1974005081-322



I ® @.,..ooot
LISTREQUIREMENTS _ BASEDON INERTNESS,J_ HOOSE DIMENSIOI'_ PERMEATION

! I SWELL,AND OTHER I J POTENTIAL
I I PROPERTIES I i

_ eo__O_i® I [®C"CU_'F'_,S'_TdlIQ_"OO_'_O"':: I I®_S'_,,Oa_OU_!
I .I INCLUDING EFFECTSOFI i J A. TOTAL LOAD U DIAGRAM) J__

CHOOSETOLERANCES M THERMALEXPANSION/_ B. DEFORMA1IONS _ CALCULATEALL
I i CONTRACTION AND I I C. STRESSES I I F_CTUREm_iA_l I

J AND FINISHES J J SWELLING ! J CALCULATEOTHERTWOJ I EXCEPTFATIGUE J J

 kf.o ,ooo•
.C_.LCULA:E .... %EL_ANSION/ CALCULATE
CONTRACTION LEAKAGEAT CALCULATE
AND STRESSESAT NOMINAL AND CALCULATESETAND
TEMPERATURE EXTREME /STRESS RELAXATION TLEAKAGEIMEVS.
EXI_EMES TEMPERATURES IAS FUNCTION OF TIME

_ 'F NO .C._) _.(__GO _ or (_ NOGO

hCALCULATE CALCULATE CALCULATE
STATICFATIGUE WEAR/EROSION .

• TIME-TO-RUPIURE
J CYCLIC FATIGUEL CYCLES-TO-RUPTURE RATE

t

e

! IoLCULATE CALCULATE ITERATEPROCEDURE
"1 LEAKAGE INCREASE FRICTION

, - , I OPTIMIZe,, ,I DUETO WEAR/EROSION LOADS -1 AS NECESSARYTO

Ftgure 6.14 Seal Destgn Procedure
Diagram

b

I I
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. _ _ 7.0 CONCLUSIONSAND RECOI_ENDATIONS

_' This programhas evaluatedpotentialsealmaterialsand character-

" _ izedthe sealmaterialssuitablefor use in propulsionsystemsealing

applications.It is concludedthat thesematerialscan be appliedto

i SpaceShuttleEarthStorablePropellantseal applicationswith high

" _ confidenceof success.; ,'o

- _ Two of the materialsAF-E-124Dand AF-E-4llare presentlybein_

_; used by TRW Systemsin earth storablepropellantflightsystemsand

? _ the other,AF-E-4llA,is beingused in a flightbiologicalinstrument

packagesystemas a valveseal.

Valvemanufacturersare presentlyconductingsomeexperimental

evaluationsof thesematerialsfor SpaceShuttleapplications.

. _ 7.1 Conclusions

Althougha numberof seal materialshave beenused in the pastfor

) _" propellantservice all haveexhibitedproblemareaswhichmake them

• _ undesirablefor extendedservicein SpaceShuttleapplications.The

baselinematerial,and thematerialwhich is bestcharacterized,Teflon,

has shownmany advantagesdue to its inertnessin propellants.

For oxidizerservicehowe_er,the elastomerAF-E-124Dis considered
p

to be generallysuperior,when usedwithinspecifiedconditions.The

basicadvantage- are:

I. Beingan elastomerit is more tolerantto contamination
and therebyexhibitslongerlifecapability.

2. Retentionof sealingcapabilityovera long termby
increasedcompressionset resistance.AF-E-124Dretains

." resiliencyafter long periodsof compression.

No othernon-metalllcmaterlalexceptTeflon, can h_ :onsldered

for N204oxidizersealservice. OxidizerIncon_atibllltyrues out
other non-meta111cmaterials. (CarboxynltrosoRubberIs not yet

sufflclentlydevelopeoto be consideredfor use.) AF-E-124Dhas

O
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)
demonstratedgoodoxidizerresistance.Constraintson the use of this

materialare primarilyin the area of hightemperatureexposure. As

operatingtemperatureis increased,the mechanicalpropertiesare

reduced. Above200°F,considerationof reducedpropertiesmust be made.

No permanentchangeoccursafterreturnto roomambienttemperatures.

For fuelservice,bothAF-E-124Dand AF-E-41Iare excellent

materialsand are recommendedfor SpaceShuttleuse. The optimum

materialis consideredto be AF-E-411for thisservice,sinceit

exhibitslesscompressionset thanAF-E-124D. Since thismaterialis

currentlybeingused for a fuel seal in flightapplications,it would

be the firstchoicewheredifferingsealmaterialsare permissiblefor

fueland oxidizer.

The recomr_endedflushingand cleaning_olutionfor AF-E-124Dand

AF-E-411is isopropylalcohol. FreonTF and trichlorethyleneare not

recommendedsincesignificantweightand dimensionalchangesoccur as

a resultof exposure. The effectsof very shorttermexposureto Freon

TF have not beenevaluated,and if use of FreonTF is necessary, _

evaluationof the plannedexposureperiodeffecton the elastomers

shouldbe determined.

As in all sealapplications,the specificdesignmust be oriented

towarduse of an elastomer,and to takeadvantageof elastomeric

properties.When used in thismannerthesematerialsshouldbe t

superiorin performanceto othersealmaterialsfor propellantservice.

7.2 Recommendations

The sealmaterialsrecommendedas a resultof this program,have

been characterizedand evaluatedto a largedegree. There are factors

which couldnot be determinedin a relativelyshorttermprogram. It

is in this areathatadditionaleffortis recommended.
I

A primaryconcernin a sealmaterialdesignedfor longtermservice

is the long termperformance.A programof obtaininglongtermreal

timedata is recommendedto obtaindata priorto the timecomponentsin °
?

operationwill havereachedthatage. _j
.J

7-2 ]
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Thereare a numberof ways of accomplishingthis. The mostexpedi-

tiousmethodof accomplishlngthiswould be a test programapproximately

as follows:

Obtainpropertydata on both stressed(compressiveand tensile)

and unstressedmaterialsamples,immersedin propellantas a function

of timeat room temperature.The testswould consistof compression

set, tensilehangingweighttests,and mechanicalpropertiesas described

below,

CompressionSet Tests. O-ringcompressionset samplesof fixed

diametersshouldbe placedin propellantstorageat ambienttemperature.

Sampleswould be removedfrompropellant(e.g.3 sampleseach of two

sizes)each threemonth periodfor fiveor moreyears. Measurementsof

compressionset would then be takenas soonas removedand then after

an outgassingperiod.

i TensileHanging WeightTests. Trip]icateor more specimenswould

I be subjectedto "hang!ngweight"tests in propellantat ambienttemper-

ature for fiveyears or a selectedperiod. The elongationas a function

! of exposureperiodto propellantswould bedeterminedat six month
intervals.Mechanicalpropertieswould also be determinedat these

I intervals.

MechanicalProperties.Triplicateunstressedspecimenswould be

immersedin propellantswith samplesremovedand mechanicalproperties t

measuredevery threemonthsfor fiveor moreyears.

Thistest serieswould providelongterm compressionset and

mechanicalpropertiesdata and is a minimumcost typeof testwhich

can be readilyinitiatedsinceno specialequipment(otherthanpropel-

lantstorage)is required.

To provideadditionaldata, all or part of the abovetestseries

could be placed in a thermally controlled environment and subjected
to thermal cycles typical of anticipated Space Shuttle duty cycles.

Other recummendedadditional data which would provide added per-

formance and long term prediction capability are:

) 7-3 i
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o Mechanicalpropertiesdatawhile immersedin propellants
as a functionof propellantimmersionperiod.

o Conductan analyticalprogramto providean extrapolation
with relativelyfew data pointsfrom shortterm tests.

, Add and revisethis extrapolationas data is required.

_ o Determinevalveand staticsealconfigurationsand place
testfixtures,or actualhardwarewhere available,in

extendedpropellantstorageconductlngperiodleakage
and functionaltests.

o Conductadditionalsystemcleaning/flushlngfluidtests
and techniqueevaluationto determinedegreeof effect
when usingtypicalcleaningcycleswith commonlyused
fluidssuch as Freonwhichwere not recommendedas a
resultof longterm test. These fluidsmay be necessary
for operationalsystemsif cleaning/flushin;operations
are routinelyconducted,and some flushingwill be
requiredfor decontaminationprior to maintenance.

In additionto theserecommendationsfor acquisitionof long termdata

,, the followinggeneralrecommendationsare made:

(1) Whenelastomersare to be usedas a replacementfor

plasticseals,the identicaldesignshouldnot be _'_
used,but ratherbe designedfor elastomericuse.

(2) When usingAFoE-124Din oxidizer,wheneverpussible
do not cleanand vacuumdry but leavethe material

exposedto N20_. Since thereis some swellupon
exposureto "propellant,thismaintainsa con-
stantsealgeometry.

' (3) The optimumvalvetype for use with an elastomeris
a poppettypeseal. This is primarilybecauseof t
the highresiliencyof the elastomer,which creates
a higherdegreeof wear when in a slidingapplication
suchas a ballvalve seal. When used in a ball

valve,a retractingseal/ballis recommended.

7-4
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" ' APPENDIXB
,. ,'

> _ EXCERPTSFROMANALYSISREPORT

The following Sections from the Analysis Report 72.4781.6-262,

L dated6 November1972are includedin thisAppendix. Althoughthe
completereportis not includedin thisAppendix,much of the material

" _ containedin the remainderof Report72.4781.6-262has beenincorporated

_ and expandedin the bodyof the final report.

-,! l.O Introduction

i 2.0 Summary
3.0 Sealing Technology Survey
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FOREWORD

lhe information contained in this report was obtained from a

nvmber of sourcps. Specific data was obtained through the cooperation

of a number of contractors and go,ernment agencies. These sources are
T

acknowledged in Appendix A of this report. Much information was obtained

chrough infomal discussion and it is intended that the organization be

identified i_ _ne appendix. Any omissions are inadvertent.

With a survey of this type, particularly of state-of-the-art.

infJrmationgathering is a continual process. Informationis expected

to be obtained after this report is issued. Data of significant value

wil_ be included in the future as a revision or appendix to this report.

Individual contributorsat TRW include G. Howt_l, J. Martin

as well as R. N. Por+or.
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_ 1• INTRODUCTION

=_ " This reportsummarizesthe resultsof the investigationconducted

duringTask I of this program. This Task,entitledAnalysis,includes

. a surveyof sealingtechnologyto determinestate-of-the-artin seal

• materials,seal designs,performanceand sealmaterialbondingtech-

/ niquesas relatedto earth storablepropellants.The specificpropel-

lantsof interestare,nitrogentetroxide(N204),monomethylhydrazine

_ (MMH),hydrazine(N2H4),unsymmetricaldimethylhydrazine(UDMH),and a ,

50/50mixtureof UDMH and N2H4. Seal applicationsare primarilyclosure,
' staticand dynamic.
t

In the surveyeffort,past and currentpropulsionsystemsare one -
@

categoryinYestigated,and advancedor developmentsystemsor techniques

another.

Also includedin the AnalysisTask is the determinationof critical

materialand designparametersrelatedto sealdesignand perfomance.

Evaluationof all knownfactorsinfluencingsealbehaviorare included

in thistnvesttgation,and a determinationof the relativecriticality.

• The summationof theseeffortsresultsin a determinationof

; presentsealstate-of-the-artcapabilitiesand limitations,which is the

lastphaseof the analysistask.

The resultsof theseactivitiesare reportedin Section3

State-of-theArt Survey;Section4 CriticalMaterialand DesignParameters,
p

and Section5, State-of-theArt Capabilities.

Section2 providesa brief summaryof the resultsof each effort

and conclusion.Referencesare listedin the appendices.
t

i

P_ING PAGE BIblE NOT FILMED _
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_ 2 SUMMARY

Applicationdata fromthe testingof successfulflightsystemshas

shownthatpresentstate-of-the-artsealingtechnologyis, in general,

•* adequatelysatisfyingtodaysearth storablepropulsionsystemrequire-

ments. Typicalof these requirementsare softseator poppetvalves
usingTeflonas usedfor ApolloServiceModuleand LunarModuleRCS

> enginesand Teflonballvalve sealsused in the LunarModuleAscentand

Descentengines. Typicalmonopropeliantapplicationsare metal to metal

sealingin IntelsatIV;Teflonsealingin TranstageRCS and P-95 RCS;

L and ethylene-propylenerubberelastomersin IntelsatIII,and numerous

militarysatellites.

In many cases,the cycleand operatinglife requirementsare rather

low,but thereare caseswhere highoperatingand cycle life is necessary.

Satelliteapplicationsof smallvalvesis a primaryexamplewhere a five

. year lifehas been demonstrated.However,the developmentand manufactur-

ing costsof many of these valveshas beenexcessivelyhigh. The forth-

comingSpace Shuttlepropulsionsystemsadd a new dimensionto aerospace
• valveapplications,includingmultiplereuse,refurbishment,and production -

techniquesmore cons+stentwith commercialaircraftphilosophy.These

new criterfawarrant,+f not d$ctate,the developmentof new sealmaterial

and designphilosophies.

A reviewof presentand advancedpropulsionsystemcapability

indicatethatseals in monoprope!!antsystemsare more capableof meeting

long term,high cycleliferequirementstypicalof SpaceShuttleappli-
•

cationsthanare currentbipropellantsystemseals. The primaryreason

for thisis oxidizercompatibilityproblems,sincevery few materialsare(
) compatiblewith N204. A basicgoal has been to use the same sealmaterial
") on both sidesof bipropellantvalves which limitsthe fuel side to

materialscompatiblewith N204. The basicmaterialused, therefore,has

beenTeflon,with someothermaterialsbeingused in limitedapplications.

! Teflonhas beenand is an excellentseal material,since it does not

! reactwlth N204. However,Teflondoes have limitedcycle lifecapability

i dueto "coldflow"or permanentset,which eventuallyallowsleakageeven )when fullycontained. This is more evidentin closureseals than in _.

i staticapplicatlons.
) B-12
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_ , The highcycle life, long termsealproblemis most criticalwith
M

_: ,,204, althoughhydrazinebasepropellantsar_ not withoutiong ten_t
¢

problems. Developmentof a compatiblesealmaterialfor N204 service,
:'s havinggood restorationpropertiestypicalof an elastomeris a major

step requiredfor earthstorablebipropellantSpaceShuttleapplications.
i

: New designtechniquescan undoubtedlyincreasethe capabilityof Teflon

_' seals but the degreeof improvementwouldnot appearto satisfylong• _

. term,low maintenanceneeds. The most promisingimprovedsealmaterials

) presentlyin earlyor advanceddevelopmentas indicatedby thissummaryk

" : are thosein work at TRW Systems. No other significantadvancedmaterials

were ider;tifiedthroughdiscussionand contactwithmany sources. Since

new materialsdo representa potentialtechnicalsalesadvantageit is

understandablethatmanycompaniesmay be reluctantto identifythem.

However,throughcontactswithinthe chemicalcommunityas well as in

se_1 designdevelopmentareas,it appearsto be generallyacceptedthat
\,

theTRW developmentmaterialsare currentlythemost advanced. These

•_ materialsare AF-E-124D,a fluoroelastomercompatiblewithN204 and
hydrazinebase fuels,and AF-E-I02and AF-E-411ethylene-propylene

, terpoljnnerswith "HYSTL"additivesfor hydrazinebase fuel service.

i To say thatwithoutthesenew materials,the SpaceShuttlerequire-mentscannotbe met,would be a mis-statementand an injusticeto the

excellentsealdesignersboth in governmentand industry. Howeverthe

! cost,and easewithwhich theserequirementsare met are a functionof t

whethernew materialscan more readilybe applied. Contaminationsensi-

"_ tivitywill remaina major problemwith materialsother thanelastomers,

and greatlyinfluencessystemcapability,particularlyin closureand

._ dynamicseals. For this reason,advancedelastomerdevelopmentis highly I
desIrabIe.

Cyclelife limitationsare more evidentand potentiallyseverewith

largevalvesealdesignsthanwith smallertypes. These casesemphasize

themechanicallimitationsof existingsealsand the need for improved

materials. Cycle lifeof 25,000cyclesor lessis typicalof existing

largevalveseals,while requirementsof 100,000cy_.iesor greaterare

' _ ("_)" requiredfor SpaceShuttleappllcations.B.13
m mm
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• Existingstaticsealdata do not provideconfidencefor longterm

_ application,primarilybecauseof the scarcityof applicabledeta Most
,

staticsealsare metallicpressureenergizedseals,in most caseswith a

coatingof softmetalor polymer. These are suitableonly for limited

service. O-rings,the most commonseal type,performto differingdegrees

dependenton materialcharacteristics,but all will take a permanentset

._ overextendedperiodsof time. Thiswill, to somedegree,restrict

systemlife capability.Most existir,g systemsrequiringlong service

lifeuse p.=rmaklentweldedor brazedJointsfor maximumreliability.

Improvedelastomersand designsare requiredfor separableconnectors

for use on longtermpropulsionsystems.

The materialand designparameterswhich are criticalto storable

propellantsealswere foundto be generallysimilarto thoseidentified

for oxygen-hydrogensystemsin TRW Report72.4781.6-154.Althoughthe

propellantsare differentand the temperaturerange lessseverethe basic

sealingmechanismsare identical. The degreeof criticalityis not

altered,althoughthe effectsof compatibilityare general3ymore

_ronounced.The parametersconsideredof major importanceare shown in

i._bles2-I,2-2, 2-3 and 2-4 for poppettype,bali valve,staticand

dynamicseals. Tha degreeof criticalityis indicatedfor given

conditions,but is as deper,denton seal designas other factors. While

an absolutelistrankingsealparametercriticalityfor all conditions

cannotbe p_epared,certainparametersrankhigh in all cases. Inertness

(propellantcompatibility)and permanentset are primaryexamples.

The basic conclusionsreachedduringthis investigationare that

materialsnot presentlyin currentstate-of-the-artserviceare highly

desirable,if not absolutelynecessaryto meet the long termgoalsfor

SpaceShuttlepropulsionsystems. These matpriaisrec_uiredesign

characterizationfor provenseal applicationsand improvedanalytical

techniquesfor optimumseal designas rela;edto the most critical

parametersfor the Space Shuttleseal requirements.Theseneeds are

essentialfor properdesign,developmentand productionof sealsfor

storablepropellantpropulsionsystems.

B-14
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_' _ The resultsof this phaseof the programindicatethat the continu-

_--j ing programevaluationshouldemphasizethe followingbasicareas:

.:: • Developand/orcharacterizenew elastomericseal
_¢_

j_ materialscompatiblewith N204 and hydrazine
.-' base propellants.

• Improveanalyticalmethodsof seal designand
_. performanceevaluation.
i"

• Provideimprovedseal conceptsusingimproved
_ materialsand conductconfidenceand character-

ization tests.

• Continueinvestigationof advancedseal materials

fro_ industrysourcesfor possibleinclusionint.

, the program.

t

,'
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3. SEALING TECHNOLOGYSURVEY

A sealing technology investigation was conducted as part of the

_nalysis task to determine and document state-of-the art. This investi-

gation encompassed past and existing propulsion Rystems and also newer

systems or development programs. The areas of interest include seal

materials, seal designs, performance, and bonding technology. Although

all known systems have been considered, not all are presented here

either because of similarity, lack of data, or the proprietary nature of

the data. As would be expected, (and experienced during the survey of

oxygen-hydrogen seals for Contract NAS 9-12500) specifics of seal design

are closely guarded by many companies since this is one of the critical

areas determining valve or seal performance. As such, no data known to

be proprietary or restricted by a source of information has been included.

: Section 3.1 identifies typical past md existing propulsion system

components, seal types and an evaluation of designs and capabilities. The

bulk of the state-of-the art information comes from these systems since

they are operational and have the greatest history. Both bipropellant and

monopropellant systems are covered.

Section 3.2 discusses more advanced systems or techniques which are

either in development currently or have been developed but not used

operationally. This can be a very fine line, since one flight will classify

an application as operational, while only a qualification program may not.

These classificationshave not been strictly adhered to since alternate i

sources or completely qualified components and systems should be approxi-

mately equivalent to flight systems.

: Materials in current use or being developed are identified in Sections

3.1 and 3.2. These materials are discussed at greater length in Section

: 3.3 along with any which should be considered as a result of current develop-

ment efforts.

1

Methods of obtaining data included using the WESRAC (Western Research

' Applications Center) literature search compiled for Contract NAS 9-12500

: (included in report 72.4781.6-168),TRW reference library and vendor files,

and primarily, contact with systems and/or component manufacturers, and

users. Much of the detailed information needed has not been documented to J

B-20
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the extent that it can readily be transferred,and in these cases verbal

data were used to establish design type, capability and performance.

3.] PAST ,,luEXISTING PROPULSION SYSTEMS

A survey of all known propulsion systems was made. A summary of

i/ importantsealing components in selected systems is shown in Tables 3-I

and 3"2. Table 3-1 shows typical bipropellant system valve types and

requirementsor capability. The propulsion systems addressed are Gemini,

Apollo LM/AE DE & St|,Transtage, Lunar Orbiter, Minuteman Ill Post

Boost Propulsion System, Delta, Agena, Saturn SIVB, Titan Ill, MMBPS,

and ISPS. These are not a11 the past and existing storable propellant

systems, nor are all the valves in each system covered in detail. However,

the valves listed are considered representativeof state-of-the art in

those systems with varyi-?valve sizes included and the systems tabulated

summarizing past and existing state-of-the art. Specific valve seal

designs are briefly described identifying characteristicsof design where

possible. Specific details of manufacture such as surface finish, seal

material conditioning and seal loads are not provided in most cases since

these are considered proprietary by many manufacturer_.

This table and attendant state-of-the art in bipropellant systems

indicates that Teflon is predominantly the state-of-the art valve seal

material for most applications. Other non-metallic materials have been

used such as KeI-F, polypropylene and Kynar, but in a limited number of
I

; cases. The problems of material compatibilitywith N204 severely limits
; the choice of material. Metal-to-metal seals have also been used, but

also for a limited number of applications.

i Table 3.2 provides a summary nf monopropellant hydrazine valves

i and capabilities. Although the wide use of monopropellant hydrazine for

i propulsion systems is relatively new there are a large number of systems

_ that have been developed primarily for RCS or attitude control of
I

( satellites. The primary valve applications are for thruster valves, and
: propellant tank isolation Most of the applications are for lov_(lessi

than lO lbf) thrust, although applications to 300 ibf have been accom-
plished.

B-21

.... t- • •

1974005081-349





_, w ..

¢

Valve
_. Vehicle or Engtne or Type/ Pressure Flow 'Rate
.,:, Stage System Supplier Function pstg lb/sec _terta, , ,i ,,

_ Intelsat III TI_ Poppet- 600 O.OlS EPR
/ ,. Thruster
_ ,: Pioneer F&6 TRH Poppet- 600 EPR
L',_, Thruster

• DSP TRW Poppet- 600 O.015 EPR
- _ Thruster

_ DSP TRW Poppet- 20 EPR
Thruster

_. DSCSI[ TRg Poppet- 600 0.015 EPR

Thruster
_" Intelsat IV Hughes Poppet 365 Tungsten

Torque Rotor Carbtde
•" Thruster

_' Intelsat IV Hughes Poppet 300 Teflon
Isolation

"_ ATS F&G Rocket Research Poppet- 400 0.0004S Teflon
Thruster TFE

E,"TSA Rocket Research Poppet- 400 0.0022 Teflon
Thruster TFE

& P-95 Rocket Research Poppet- 300 Teflon
• Thruster TFE

P-g5 (Alternate) Rocket Research Poppet- 300 Teflon
Thruster TFE

Transtage Rocket Research Poppet- 400 O,117 Teflon
f Thruster TFE

J RAE-B Ham11ton-Standard Poppet- 225 Tungsten
Thruster Carbide

SMS Rocket Pesearch Poppet-
Thruster

II)CSP/A H_nl1ton-Standard Poppet-
Thruster

Skpt (NATO)

NL Explorer H_11ton-Standard
CInadtan MS HBt 1ton-Standard

NRLHPH Rocket Research

827 Rocket Rs:earch
m n m , . '.....

C')
i

• I
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I
Seal Seat Leak Rate Specif.

Ii I Test Allow. Cycle
;re Flow Rate I Test Pressure Rate Life Valve

Ib/sec _terial JConfig Material Config Fluid psig SCCH Spec. Manufacturer i

O.OIS EPR Flat 304L Flat GN2 600 0.5 60,000 FairchildIndustries

EPR Flat 304L Flat GN2 600 0.5 Allen DesignInc.

0.015 EPR Flat 304L Flat GN2 600 0.5 60,000 Fairchild,Allen Design,Pamr-l¢_1

EPR Flat 304L Flat GN2 20 0.5 l x lO6 Allen DesignInc Gas (DKamp II_¢4)

O.OlS EPR Flat 304L Flat GN2 600 0.5 60,000 FairchildIndustries,Parblr-N_iffm l

m

Tungsten Flat Tungsten Flat GN2 5.0 HydraulicResearchCorp.
Carbide Carbide

Teflon Ring 300 CRES Conical GN2 300 2.0 1,000 CarletonControls

I

0.00045 Teflon Flat 304L Flat GN2 400 1.8 1 x 106 Parker-Hannifln i
TFE ;

O.0022 Teflon F1at 304L F1at GN2 400 5.0 Parker-Hannlfln
TFE

Teflon Flat 304L Flat GN2 300 1.0 1 x lOS Parker-Hanntftn
TFE

Teflon Flat 304t Flat GN2 300 l.O 1 x I0S Moog Inc.
TFE

0.117 Teflon Flat 17-7PH Flat GN2 360 5.0 72,000 Moog Inc.
TFE

Tungsten Flat Tungsten Flat GHe 210 5.0 Hydraultc Research Corp.
Carblde Carblde

Parker-Hannt fin

Hydraulic Rese, :h Corp. )

1
Hydraul Ic Research Corp.

Wright Components
Wright Components

Perker-Hannt ftn
i
I

Parke r -Henrit ft n1

PAGE BLAB_ NOT _ME1

Table 3.2. RepresentativeNonopropellant
HydraztneSystlmValves

e-25 FoIJ)OI_

g_.
-7".... .2"2 --._-._.: .... ' ...........

1974005081-352



The type of valve used is a poppet-type either coaxial solenoid or

torquemotorwith single or redundant sealinq elements. Materials in

general use for valve seals are: Teflon, ethylene-propylenerubber, (EPT)

etny!ene-propyleneterpolymer-HYSTL,(EPT/HYSTL)and various metal combin-

, _" atlons. Butyl rubber could also be used and probably has but no specific

- _ app11cationwas identified. More complete materials discussions are

provided in Section 3.3, materials.

; 3.I 1 B)_ropeIIant S_sternSeaIin9

! A nu.mberof successful operational bipropellant systems are in
L

existence, some of which are shown in Table 3-I. All of these systems

are typified by relatively short life cycle requirements,at least as

_ndicatedby specificationvalues. Since, in most cases, no requirement

' exists for a higher cycle life, the maximum cycle life is unknown, but

, it is probably valid to assume the same order of magnitude.

Some of the valve seal applications are described and discussed

belew as an indication of the types of sea! designs presently in use in

• . typical state-of-the art systems.

. Apollo Service and Lunar Module RCS Engine Valves
#

This valve, referred to as the Model R-4D valve, was developed by

the Marquardt Company and was qualified and flown as part of their Apollo

Service and Lunar Module RCS engines In addition it has been qualified

| and flown on the Lunar Orbiter and classified satellites. Currently it is

under test at JPL for use in the Mariner '73. In these applications the
propellantswere (are) N204, Aerozine-50, and monomethyl hydrazine. The
total amount of development expended on these valves has been very large

and they are very expensive but the results, as summarized below, are

outstanding.
i

Figure 3-I shows the seat/seal details of the valve. By beveling

the Teflon disc at 43 degrees and the metal poppet at 45 degrees a progres-
I

sive contact is achieved which starts at the "upper" edge and ends at the

; "lower" e_ge where metal-to-metal contact occurs between the poppet and

' the beveled metal support beneath the Teflon disc

PRCEI)INGPACE NOTFILMID
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[EFLON SEAL

STELLITE NO. 6

- Figure 3-I. Marquardt R-4D valve seat detail

In the fully-closed position the spring applies a 2.75-pound load;

• the poppet is pressure unbalanced so fluid pressure will increase 1oad-

ir,g by about 0.038 times the pressure. This force generates an apparent

sealing stress of approximately

: as _ 72.5 + P

both the seal and poppet surfaces are finished to approximately 8_ in.
I

Leakage rates specified for most applicationswas 5 scc per hour

, of gaseous nitrogen at pressures up to 200 psi. Measured leakage rates

have been less than 0.3 scc/hr in the vast majority of valves tested

! Specified service temperature range is +32 to +200°F. i

; Qualification for the Apollo application entailed a great amount

: of testing, the results of which are readily available to NASA in

,, Reference 61, and so will not be repeated here.

w
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_, The most recent testing has been carried out at JPL as part of the

_,lariner'73 oroiect Fnr that _nnl_r_i_- *h^ at1^ ..L__. • .... _r..........._ u_au,_ leak r'dteis

3 scc/hr of GN2 at 380 psig. Three valves used in 65 firings for a total

firing time of 7500 seconds yielded a maximum leakage rate of 0.68 x lO-4

/ scc/sec of helium gas at 300 psig. One valve was put through a random

- vibration test at 5.5 O'S rms for one minute along each of three axes

(includ_n_ the valve poppet axis) after which the leak rate was 0.75 x lO-4

(sar_ units) _t both lO and 300 psig. After lO00 dry cycles with a

' vacuum downstrea:1a valve was leaking at the rate of 0.03 x 10-4 (same

•_ units) at 300 psig. Results of a six-month soak in hydrazine with vacuum

downstreamwere not available at this writing but apparently the accumu-

lated leakage was about l/lOOth of the acceptable rate.

Two valves were subjected to the subsystem Type approval testing.

Vibration testing included one minute along each axis of lO g's rms

random, sine wave sweeps along each axis at one octave per minute at 0.75

g's rms for 5 to 35 Hz, 6 g's rms from 35 to 300 Hz, and 12 g's rms from

300 tn 2000 Hz, plus a combined frequency test increasing at 24 db per

' g2/Hz g2/octave from I0 to 50 Hz to a level of 0.28 , a constant 0.28 Hz

at 750 Hz and above that at 12 db per octave to 2000 Hz. No increase in

leakage rate above the initially measured amount of approximately l x 10-6
i
! was detected• These two valves were also pu_ through the Flight Acceptance

'I, testing with the same results, s

Five valves fabricated in 1969 w_re subjectad to the Flight Acceptance

testing. This test series included vibration along three axes at these
levels: 6 g's rms random for 20 seconds, sine wave sweeps at 3 octaves

! per minute at 0 5 4 and 8 g's rms for the same frequency bands cited !e, , I

above for TA testing, and combined frequency tests as outlined above but

at O.l g2/rms and 0.022 g2/rms rather than at 0.28 and 0.063 g2/rms.

Following these tests the leak rates were in the range of lO-7 scc/sec of

helium at 435 psig.

From these results at JPL it may be inferred that the R-4D valve

seat is very leak-tight under the conditions of test.
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;: Minuteman III Post Boost Propulsion System (PBPS)

This propulsion _ystem is somewhat unique in that as d strategic

weapons system, it must be capable of long term storage over a range of

._ temperatures and conditions, and yet be able to perform on commandwith

> no pre-launch checkout similar to most spacecraft launch or propulsion

,_ systems. This system is the "fourth stage" of the Minuteman III system.

Most of the system is welded or brazed with metallic prooellant

isolation devices during storage. Therefore, although the propulsion

system may be stored for five years prior to use, the propellant is

isolated from non-metallic seals during this period. In this system,

to insure that no propellant degradation occurs during storage this

valve (and the RCS valves) see no propellant prior to flight. All flow
data is obtained with reference fluids.

Two types of valves are used in this system for propellant control

for the axial engine and to the RCSengines. The axial engine valve is

a torquemotor valve utilizing a soft Teflon poppet sealing on a thin

metal seat land and the RCSengines are torquemotor operated with a J

Teflon seal in the seat. A;though the specific details of design and

construction are considered proprietary to the valve manufacturer, the

sealing technique is as indicated schematically in Figure 3-2. In this

design the poppet incorporates a Teflon ring, which is mechanically

retained. The metal seat land is sized to provide adequate seal loading,

but combined with the ontrapped Teflon configuration, is not high enough

to result in excessive cold flow as evidenced by successfull operational

, history. The metal seat finish is important while the surface finish of
I

the poppet is of lesser importance. Of major importance would appear to
i
, be manufacturing techniques for the Teflon and seat including parallelism

i of the mating surfaces. The design cycle life of I0,000 cycles and leak-

i specificationof 5.0 scc/hour would conservative for this sealage appear

design•

! The RCS valve seal is shown schematically in Figure 3-2. A Teflon

! seal is incorporated in the stationary seat element in this design.

1 Mechanical seal retention is generally as shown in the figure with two )

i concical surfaces retaining the Teflon, with sufficient protrusion above' B-30
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:i the surface effect a seal agafnst the flat poppet face, A large data

base has _hown thls..._o_x_+_,,_._,,,,,_to be relfabl_ for the 5,0 scc/llrspeci-

fication leakage rate and required cycle life of 10,000 cycles, This

._ design is also highly dependent on processing and fabricating techniques

) . for the metallic and non-metallic components.

?- .

.-,_ The two sealing techniques indicated by Figures 3-2 and 3-3 cover

the seal typzs for a number of systems. In particular, Figure 3-2

typifies the sealing concept used for Mariner Mars '71, MMBPS, and ISPS,

bipropellant systems; and Transtage and P-95 alternate valves.

I

The ri_ut._,nP;FS valve sealdes!q}has beenQualifiedto the follaw!n,_conditlo,samd subjectedto flighttests'

Axial _nolm+Valve RCS Engine_alv_

'"'L 9?r V._+°,_-_" ,+'' her "" o _,_

",.q '.+¢9

._tr-,'.:S 5 years minimuRl 5 vLe'S '_'_+_u_

C,'_'+-'."res_urlzed I_,C30 (I_00dry) I".Y_'(IG_Odry)

{ "'_....: +22 tr,+Ir3_F œ�\+,r,_°_,.

. -".  d�T�t?*?Z " .r,_, t _ ,,,^?_c

(cxcect*I;3_Fheat s,_aka,,:k) le_ceot-150 r soak b_:k3

_- .:,_r?t.'r, 247 psig 247 _sle

r_.p, 435 psi; 43_ osI_ Iz
',',,L 535 ps'g 5&5 ns_,1

-_ ,_'., r_,,''_r',t$
_Z ..........

,_"r,'.:iO_ (Operatln_'

P:,''c 0.3g2/Hz(_ax)to 2000ORS 3.0g2/Hznarrowband,or 0.6g2/Hzbroad _n4 CZ9.8:'r_s)
S.lur_,id_l 1.759n_s (_ax) 'I/A

S,o:_ 45g peak (max) 45o peak (max)

_,,_',d-ty 0 - 95% R.H. U - 95% R.li.
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SEAL-TEFLON

Figure 3-2. Schematic Poppet-Seat Configuration

_ III Axial Engine ,

SEAT

POPPET-METAL

' SEAL-TEFLON

Figure 3-3. Schematic Poppet-Seat Configuration

MM Ill RCS Engine )
q

>
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: Apollo Latchin9 V_lve

" This valvewas usedon the fueland oxidizerpropella,Jtstorage
* m

_so_:,,,_of the LM. The basicpurposewas to provideshutoffcapability

for propellants.Approximately800 unitshavebeenmade and the valvehas

seenextepsiveflightserviceon Apollo. Figure3-4 showsthe poppet

/ sealingmechanism,althoughnot necessarilyto scale. In thisvalvethe

poppetis of a pressurebalanceddesignallowingclosecontrolof the

seal load,primarilythroughthe sprir,g force. The Teflonis mechan-

icallyretainedin the stationaryseatareaof the valve. _eflonseal

stressesare controlledby meansof a metal stopwhich limitsthe Teflon

deformationand sealstresses. By contro111ngthe free heightof the

Teflonabove thisstop,excessivedeformationunder load (coldflow) is

eliminated,althoughnormalcompressionset occur3as with any polymeric

material.

The qualificationrequirementsfor thisvalveare shownbelow:

Propellants - N204, Hydrazine,UDMH

• Design Life - 2000 cycles(min)

Temperature - -65°F to +240°F

' Pressure
!

Operating - 250 pstg

Proof - 750 pstg

_, Burst - 1050 pstg

) Envlr_nmnts

VIbratlon

Random - O.6g2/cps{max)

Sine - IOg peak {max)

Shock - 15g peak (max)

Humidt ty - 100%

6-33
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Figure 3-4. Apollo LatcMng Valve Showing Seal
Configuration
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Lunar Hodule Descent Engine Valve

A quad-redundantball valve was designed and manufactured by

Whittaker Corp. for use in the TRW Apollo Lunar Module Descent Engine

(LMDE). This shutoff valve was designed for N_O, and A-50 service over
L

a fluid temperature range of +40 to +120°F. Nominal valve flow passage

diameter was 1.125 inches.

" The rotors (paFtial spheres of 1.93-inch diameter) were made of

- _ 17-4PH CRES and polished to a 4_-ir,ch finish. Dual lipseals of Grade 7A

Teflon in a "U" shaped configurationacted as valve and static seals

(see Figure 3-5). Spherical lands of about 40 to 60 mils width were

pressed against the rotors with a force of 30 to 38 pounds by Be!leville

springs, generating an apparent sealing stress of 88 to 170 psi at zero

fluid pressure. These lands were:specified to have a 32u-inch finish,

Specificationleakage rates were 10 scc/hr of GN2 at 235 psig.

6. RETAINER

'.==\ /
uuu .'////S':'e4'" "-""-:"">.>._._

l¢.7_s>_ ,-..-, ; -.
 Dk'-q :'¢-: .....

<'5"_ >;>>;

ATIC SEAl.
SURFACE ._0TORSEAL

1. SrACEI I. ' _ SURFACE

2. SPRING t.3) 3, cPACE_ /
4. SPACER

Figure 3-5. LMDE Shutoff Valve Seal Cross Section

' Relaxation and wear was found to reduc=,the load to between 28 and
i

30 pounds, yielding an apparent sealing stres_ of 82 to 134 psi. Once

this level was reack_ further service seemed to have little effect as

proven in tests to I, iry cycles.

Very few leakage problems were encountered during development.

On]y one case of liquid leakage was authenticated and that occurred

B-35
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because a valve was inadvertently left partially open for several hours

resulting in a crease across the faces of the seals. Excess leakage

measured in tests with GN2 were attributed to contamination and flaking

of the Teflon during dry cycling. During a 60-day compatibility test,

leakage was measured periodicallj after cycling until a total of 320 dry

:_ cycles and 42 wet cycles had been accumulated. A total of 168 leakage/
measurements were made at 50, 180, and 280 psig. All results were "zero"

except in 15 cases where rates varied randomly up to 75 scc/hr; no

pattern was evident.

In order to reduce the tendency of the Teflon to flake during dry

cycling it was impregnated with a special lubricant (FS-5 produced by

Hooker Chemical) and externally lubricated with Krytox PR240-AC grease

(a product of du Pont). These lubricants substantially reduced the

flaking rate.

Lunar Module Pre-Valve

This valve is used on both the ascent and descent engines of the

Lunar Module providing shutoff of the pilot portion of the thruster

and RCS valve i_olation. Although used in a bipropellant system, the

valve is used for fuel operation only ,50/50 mixture of hydrazine, and

UDMH). The overall valve cross section is shown in Figure 3-6. Plunger

sealing and static body seals are also elastomeric o-rings. In use the

valve is used in parallel redundancy to ensure that flow can always be

initiated, but relying on sealing capabilitv to limit leakage. The seal t

is a flat elastomeric metal seal with the soft _aling element in the

"" poppet, the LM application ethylene propyle,lerubber (EPR) compound

E515-8 was used. The seal is essentially a mechanically retained o-ring

as shown in Figure 3-7, mating with a flat lapped metal seat.

)
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]
4 O-RING___ _ I_ POPPETASSEMBLY

.
' POPPETSEAL

Figure 3-6. LM Pre-Valve Cross Section

v

: POPPET

1
t
i Figure 3-7. Poppet Seal Conflgurllt'.._

} Used for LM Pre-Valve AppltcatlOWl -
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Apollo Lunar Module !

N204 and Aerozine-50 are pressurized to about 270 psia and 205 psia
in th_ LM Descent ....:_ Ascent sj_'"_---_:,,,_,respertive]y. Several different

types of static, dynamic and valve seals are used to contain these

propellants. All brazed tubing assemblies without static seals are used

to contain the helium pressurizing gas.

In some smaller line connections such as at the pre-valve inter-

faces, Gamah metal-to-metal seals are used. At other engine interfaces,

RACO seals (metal seal with Teflon coating) are used. Flared tube

fittings, modified to accept Teflon o-rings in grooves cut in the beveled

surfaces, are located at the high point bleed and low point drain. The

oxidizer line trimming orifice flanges are fitted with concentric

(redundant)seals, a Teflon-coated RACO seal inside and an EPR o-ring

outside. Concentric seals are also used on the propellant gauging probe

closures. On the oxidizer side these are Teflon o-rings (103 percent

fill in MIL grooves) surrounded by formed-in-place seals of room-

temperaturecuring nitroso rubber injected into MIL design o-ring grooves. -_

This nitroso material was originally compounded by Reaction Motors

Division, Thiokol Chemical Corporation, and later supplied by Coast Craft

Rubber Products as compounds APREL 0011 and APREL 002. On the fuel

side Farker B5wl-8 butyl rubber o-rings (103 percent fill in MIL grooves)

are surrounded by _ormed-in-place seals of a room-temperaturecuring

butyl (Vistonex) injected into MIL design o-ring grooves. In oth( r

locations within the oxidizer system, Teflon o-rings were backed-b :th

the s_me Parker o-rings; despite the limited compatibility of butyl w_th

N204, this technique works in static seal applications because of the

limited exposure and full confinement of the outer seal. In general all

static seals were assig:_d a leakage a11owance of 1 x 10-8 scc/second

of helium at or near the operating pressure• Apparently Grumman had

variable success with some of these static seals but in general the

butyl o-ring seals proved reliably leak-tight.

Squib-operated valves with metal barriers serve as isolation valves

within the LM circuits. The high pressure helium pressurization gas at

1750 psi in the descent stage and at 3500 psi in the ascent stage _.)
3'
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is controlled by Jatching solenoid valves from MC Manufacturing Company.
Operating temperature range is -65 to +130°F. These valves are installed

' in I/2-inch....... ..._d_i_-,,,_,,_°_._L lines. A]lowab]e }eakage rates past the seats

is _00 scc/hour of helium at rated pressure and this specification is

usually met. Seals of Teflon in the poppets are seated against a metal

! lands. The dynamic seals on the poppet assembly which are Teflon o-rings,

have been a problem area. Initially the allowable leak rate was 20

scc/hour but this was later relaxed to 500 scc/hour because of the

• limited exposure time (about 12 minutes) makes the original tight

specification unnecessary. Both Teflon and Parker B591-8 o-rings are

used on static seals.

MC also supplied the I/2-inch line size relief valves for the

ascent stage. Integral burst discs are designed to burst at 226 to 250

psig and the valves to reseat at 225 psig. Fluid temperature range is

0 to +IO0°F. These valves are compatible with fuel and oxidizer vapor.

" Allowable leakage past the burst disc is 3 scc/hour (0 to rupture

pressure) and past the valve seat is 3 scc/minute (100 to 225 psig). The

poppet seat is a partially capped cylinder of Teflon which is beveled at

45° on the open end to mate with the conical metal seat; a beveled metal

cyclinder, concentric to and inside the Teflon, acts as a metal stop.

Teflon o-rings act as dynamic and static seals. These valves have

i performed well in service. A very similar relief valve, without thc

burst disc assembly, is used in the Bell Post-Boost Propulsion System

for the Minuteman Ill missile.

Relief valves in the descent stage are supplied by Parker. These

are installed in 5/8-inch lines and are compatibile with fuel and oxidizer.

They also have a burst disc ahead of the ,alve. A spherically contoured

metal poppet bears agairst the edge of a hole through the flat Teflon

I seat. The flexible diaphragm is laminated of Teflon and Nylon.
sensing

I Rupture pressure for the burst disc is 288 _ 20 psig and cracking pressure
for the valve is 260 psig minimum. Rated leakage past the disc is

3 scc/hour of helium up to 225 psig, and past the valve it is "0" from

248 to 50 psig.

_' Both the ascent and descent stages have Parker quad-redundant check
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valves in the fuel and oxidizer pressurization lines (5/8-inch diameter)

:, which are compatible with fuel and oxidizer, liquids and vapors. Operat-

ing t_mn:_:*,,_ range is -65 to +i60:F. Cracking pressure is 2.44 + 0.44

psid overall. At any pressure differential from 0 to 270 psid the

allowable i'nternalleakage rate across the entire assembly is 3.34 x 10-2

! scc/second of he|ium or 1.67 x 10-2 scc/second per seat. Each metal

, poppet is held normally-closedagainst the Teflon seat seal by a l-I/2-

pound spring force. These valves proved to be very contamination

sensitive due to this low seat loading.

Fill connections in the LM are l/4-inch size quick-disconnects

supplied by Shu]tz Tool and Manufacturing Company. Teflon lipseals

are used to limit the leak rate to 3 scc/hour helium or less. These

disconnectswere very leak-tight in service.

}
i
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Apollo Service Propulsion System
o

.._ N204 and A-50 are fed through stainless steel lines, with mostly

welded connections, to the Aerojet AJ10-137 engine within which propel-

lant flow is controlled by a quad-redundant ball valve built by Aerojet.

Where necessary, bolted flange connections are used. These have two

/ concentric seals, two butyl o-rings in the fuel circuit, and one Omni-

-_ Seal (Teflon U-seal with a stainless steel garter spring inside) en-

- circled by a butyl o-ring in the oxidizer. Standard MIL grooves are

used for the o-rings. Allowable leakage across these concentric seals

, is 1 x 10-7 scc/sec of helium at 175 psig. Large versions of these

flange seals are used to seal the propellant tank inspection port covers.

The fill couplings, made by J. C. Carter, have Teflon o-rings and

molded flat poppet seals of Teflon.

Helium, stored at 3600 psi, is contained at the _oints in the 5/8-

"- inch lines by butyl o-rings surrounded by metal vee-seals (NAR designi.

Gas temperatures range down to -200°F during filling and from -60 to

+140°F during operation. Allowable leakage is l x 10-7 scc/sec of

• helium at 3600 psi. These seals have been extremely successful, only

two having leaked within deliverable systems and in both cases this

leakage was caused by faulty assembly.

Within the pressurization lines are quad-redundant check valves

designed and manufactured by Accessory Products Company. Molded poppet

• ._. seals of Resistazine 88 are fitted to the oxidizer-side valves; seals
(

. _ of Stillman SR634-70 are used in the fuel-side valves.

e
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JPL/MartinMariner'71

, Nitrogentetroxideand monomethylhydrazinewere the propellants
t

in the Mariner'7ipropu|sionsystem. Nitrogengas at a nominal275 psia

._ pressurizedthe tanks. Most connectionswere brazedbut four flaredtube

jointssealedwith Voi Shan aluminumconicalsealsand two tank flange

i jointssealedwith soft aluminumcrushgasketswere used. The overall

"_ subsystemexternalleakrate reportedlywas less than I x lO-5 scc/sec

of heliumat 260 psig (Ref.62). Pyrotechnicvalveswith solidmetal

barriersservedto isolatethe pressurantgas and propellantsduring

the longcruiseto Mars. After thesevalveswere firedopenpropellants

were controlledby Moog valves, and the gas by a

NationalWaterliftpressureregulator. The poppetin the regulatoris

a metal ballwhichseats againsta Teflondisc. Check valvesfor the

pressurizationlineswere furnishedby HTL whfch have a

specifiedleak rateof 0.8 scc of nitrogenin 30 minutes. Fill

valves,made by HTL, h_d ceramicballsseatedagainstsphericallapped

metal lands;specificationleakratewas I x 10"6 scc/secondof helium

at 4000 psigfor the gas systemand at 30G psig for the fueland oxidizer

systems. Pressurantreliefvalvesmadeby Calmecwith integralburst

discswere usedto protectthe cir:uitsfromoverpressurization.A

trappedo-ringin thepoppetmates to a conicalmetal seat in the relief

valve. The diaphragmwas sealedat its edge by welding.

Reference62 citesa numberof occasionswhen the checkvalvesand

fillvalvesexceededa]lowableleakagerates.

JPL/HughesSurveyorSpacecraft

Surveyorspacecraftusedmixedoxidesof nitrogen(MON-IO)and q

monomethylhydrazlnedilutedwlth water as propellants.Enginevalves

were designedand builtby ReactionMotorsDivisionof Thiokol;conical

seatsweremade of nylon for the fuel and Teflonfor the oxidizer. Fill

and drain valveshad tungstencarbideballsseatedagainstaluminum.

Staticsealswere mostlyMS flaredtubeconnections.
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;. Boeing Lunar Orbiter
•_ Nitrogen tetroxide al_dAerozine-50 were pressurized to a nominal

_ 190 psia in the Lunar Orbiter system. Components were qualified to

operate at 65 + 35°F.

Tubing assembly connections were brazed except at the engine valve/

. interfaceswhere metal vee-seals were used. Pyrotechnic isolation valves

" with solid metal barriers were fitted to the system. Engine valves were

the Marquardt R-4D model described earlier. The National Waterlift

_ GN2 pressure regulator had a metal ball seating against a Teflon disc.

: Downstream of the regulator, in each pressurization line, were quad-

redundant check valves built by APCO Lo a design essentially identical

to that of the Apollo check valves (.describedin this section).

A ena

The Agena propulsion system uses poppet type pressure actuated

poppet valves for both fuel and oxidizer service. The poppet seals for

both fuel and oxidizer are conical Teflon seals machined from bar stock.

" This mates with a conical seat. The dynamic shaft seal on the oxidizer

valve is a lipseal made of thin preformed Kel-F (mating with high surface

finish chromeplated shaft).

The fuel valve dynamic shaft seal is an EPR (E515-8) o-ring on a 'I

, high surface finish chromeplated shaft.

A gas generator control valve also uses the same seal designs and

materials. A fuel solenoid valve (manufacturedby Marotta Controls) uses

o-rings, static and sliding o-ring seals as well as poppet seals made of
EPR E515-8. t

¢

/
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Check & Relief Valves

.. HTL Industries Incorporated manufactures a series of check valw_.s in

ii which the entireone-piecepoppetand guidingshaft is made of Teflonor
,_, • KeI-F (seeFigure3-15).These valveshave been used in the MMBPSand

Mariner'71. The Marinerversionis fittedinto 3/8-inchpressurization

lines. Its specifiedleakrate is 0.8 scchof heliumat any pressurebe-

? tween I/2 and 300 psig. The configurationof the seat is a narrowland

/ (about7 milswide)which seatsagainsta flat surfaceof CRES. A spri,g

loadof 6 poundsplusthe pressuredifferentialacrossthe valve,AP,

generatean apparentseatingstress,os, of approximately:

Os = 340 + 30 L_P

Some chatteringhas been experiencedwith thisdesignbut the seal does not

seemto be noticeablydamagedby thataction, (ForMariner'71 a damping

frictionalforcewas designedinto the valveto preventchatterbut this

resultedin some valvesfailingto closeproperlyuntila meanswas de-

velopedto keep the frictionforcewithinnarrowlimits.) Reference 58

" indicatesthat leakageproblemswere causedby contaminationand swelling

of the stem in N204 vaporsmay have contributedto sticking.

SEATOF 321 CRESTEFLON POPPET

\

I,

\

\

Figure3-13.HTL Check ValveUsed in Mariner'71 _I
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i_ Apollo Check Valve

;,f The check valve assembly used in the Apollo pressurization systems

was manufactured by APCO (AccessoryProducts Co.). This valve is used in

series-parallel assembly. It is ased in A-50, N204, and helium service.C

_, Figure 3-9 shows the valve poppet-seat configuration and the lipseal
/

configuration, The lipseal is molded in place. The seal material is

-_; "Resistazine 88" or Carboxy Nitroso Rubber designated as AF-E-]IO.

This check valve and seal material have also been used in the Lunar Orbiter

: GN2 pressurizationsystems.

w
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- ,/- 3.1.2 _lonopropellantHydrazineSystemSealing

": A briefdescriptionof sealsand applicationsused ir s_lectedmono-

_" oropellanthydrazinesyste_ is providedh=.re.Informationon a larger

; numberof applications,wlth basicrequirementswas presentedin Table 3-2

_ , previously.Thesedescriptionsare designedto supplementthe information
%

/ in thattable. These discussionsare not intendedto coverall the

applicationsmentioned,but are intendedto furtherdescribetypical

applicationsand some uniquesealingfeatures.

IntelsatIII_ DSP,.DSCS_Pioneer'Valves

A commonvalvedesignis usedfor a numberof monopropellanthydrazine

enginesin a thrustrangeof 4.1 Ibf. This valvedesignincorporatesre-

dundantelectricalcoils,and seriesredundantseatsand poppetsIn an

;ntegralunit. A crosssectionof the valve is shown in Flgure3-10.

The seat-poppetconfigurationis a flatelastomericseal in the poppet

matingwith a flat-lappedseat.

The seal is Installed in the plunger and poppet and is held tn posttton

by the retainer which ts crimped and electron beamwelded to the plunger

" and poppet. Leakageacrossthe primarypoppetIs detectedduringpre-

liminaryand acceptanceteststhrougha testportbetweenthe seats.

Sealingfor_e ts provided by the respective poppet springs plus the
hydraulicforce.i

The poppet seal ts an elastomr disk (Sttllman RubberEPT compound

724-90) and the seats are 304L and 347 statn!(,ss steel. Protusion of

the seat into the seal ts 1trotted to a nominal 0.003 by a stop located

in the center of the see1. Val_es of this basic destgn are manufactured

by Fairchild Industries, Fdrker-Hanntftn Corporation a_ A11efl Design

Incorporated. The valve has passed the following qualification

t requ i rements:OestgnLtfe: 5 years; 60,000 cycles

i Tmperature: +40 to +12Z'F
! Pressure
t , . Operating 600 pstg

i _ Proof _ I_tg :
Burst 2400 Nig ,

L s-47
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" Environments
Vibration

I , Random 0.4 g2/Hz (max) (26.8 g ms)Sine 18 g (max)
Acceleration 24 g
Humidity 95%R.H.

A similarconfigurationis alsoused in a gas applicationutilizing

/ hydrazinedecomposltionproducts. The basic seal and seatdesignare

similarto the IntelsatIll and othersdescribedpreviously.The primary

differenceis the operatingpressurewhich is 35 psiaand cyclelife

requirementwhich is l mii"ioncycles.

1 P-95ACS (andSimilarP_rker-HanniTinCorporation
Monop.ropL"lantVa,ve Applications).

A number_: mc.nopropellantenginevalvesutilizethe samebasic sealing

conc_ The_e valvesutilizea hard poppet-softseat tech'ique. (Initial

P-_5AuS _al_a_incorporatedmetal-to-metalseat_,but are not discussed

here.) The basicvalve _s shownschematicallyin Figure3-11althougheach

engineapplicationrequiresdifferenthousing,inlet,outlet,etc. configur-

ations. The sealis a Teflonring,mechanical]yretainedin the _eat and

; _sshownschematicallyin Figure3-12. The poppetcuntainsa flatlapped

sea..ngsurface,and is a free flua+ing_,.._erguidedby the armature.

Sea' loadis prcvidedby the coilspringand hydraulicforce. The P-g5

type valvehas the followingqualificationrequirements:v

] • Design LIfe: I miIIion cycles

Temperature: +35 to +250 °F

Pressure
, ' Operating 300 psig

Proof 600 psig
-- Burst 3900pslg

Environments
,i Vibration

Random 4.0 g_2/Hz(narmowband)

• i 0.6 9"/Hz Cruxother)
, 37.9 g rms

S;ne 4 g max
Shock 30 g pk (max)
HJm.idlty 9q% R.H.
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Titan Transta e_nopropellant ACSEngine Valve
_.:
"_ 3..

.... _,,_.o,ay tWO turquemotor_. The TitanTranstaoeenginewl,,_sam .....*_'_

valvesin series,providingredundantshutoffcapabilityelectricallyand

mechanically.The sealingmechanismused is similarto that previously

describedfor the MinutemanIll PBPSaxialengine. Teflonis mechanically

/ retainedin the poppetelementsealingon a flat lappedseat. This valve

has been qualifiedto the followingrequirements:

Cycle Life: 72,000cycles '

Temperature +30°F to +200°F

Pressure

Operating 400 psig
Proof lO00psig

Environments
Vibration

R___d_.m l.0 g21Hz
Shock lO00 g's

A coaxialsolenoidvalvealso uses the same basicseat-poppetdesign. This

valveis presentlyan alternatefor the P-g5 RCS propulsionsystem. Figure

3-13showsa cross sectionviewof thisvalve. The flexureguidedarmature

" allowsthe poppetto properlyalignwith the flat lappedseat f_r sealing.

IntelsatIV

Two valvesof interstare usedon the IntelsatIV communications

satellite. The thruster-valveis a seriesredundantmetal-to-metalseat

torquemotor operatedvalveand the propellantisolationvalve is a soft

seat-hardpoppetsolenoidvalve. The thrustervalveis shown in section

view in Figure3-14.

: The poppetsare of the "Metflex"design,an HR and M proprietaryname

for a flexiblepoppetwhich permitsalignmentby rotationon a spherical

} r,upport to ensure flat contact of seal and poppet. The poppet material

i ts _nr, amtal and the seat_ Tungstencarbide wtth Knoophardness in the ,

; range of 1800 and 2000. Both pop.Qetand seat are flat lapped. The

; flexure tube and btas magnets prevtcle the cl_tng force for the downstream
i
, poppet, whtle the upstream _oppet ts spring loaded to the closed position. ,

b-S1
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• The latching solenoid valve for Intelsat IV is a pressure balanced

design using bellows to accomplish pressure balancing. The soft seal
r

• material (Teflon} is .mechanicallyretained in the poppet shown typically

in Figure3-15. Controlled seat loading is provided by the pressure

balance and maximum deformation limited by the adjacent poppet metal areas.

Included in the qualification requirements are the following:

Cycle Life l,O00 cycles (valve has been
cycled 50..JCJOcycles)

Temperature -30°F to +140°F

Pressure

Operating 300 psig
Proof 500 psig
Burst 1200 psig

" Environments
Vibration

Random l.O g2/Hz (max) (25.4 g ms)
Sine 30 g peak (max)

Acceleration 15.5 g
-; Humidity 95%

i

! PRESSUREBALANC NG

•I, ,

'_ SEAT (S.S.)

/ _,r.' "SEAL (TEFLON)
PRESSURE

FLOW BALANCING BELLOWS

t

Figure 3-15. Intelsat IV Latching Valv: Seal Configuration
i
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i_ JPL Ran_er and Mariner '64, '66_ and '69 Spacecraft
o

No primary polymeric seals were used in these monopropellant

hydrazine systems. Shutoff valving consisted of pyrotechnic valves with

metal sealing. The pressure regulators and fill valves used ceramic

balls seated against metal. Flat crush gaskets of annealed llO0 aluminum

r were used at the several bolted connections which were comprised of

special flanges with serrations in the sealing area.

{
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,_ __. 3.1.I.3 StaticSeals

_, Extensive _e has been madeof welded or brazed connections in

tubingassemblieswhereverdisassemblyis not importantand high

reliabilityjointswith leak ratesbelowl x lO-7 scc/secare required.

c_ Neverthelessstaticsealscontinueto De widelyusedbecauseso many

_ separableconnectionsare necessary(or most economical).To maximlze
_V the reliability,convenience,and costof staticseals industryand

-_ governmenthaveexpendedconsiderableeffortin searchingfor and testing

bettersealmaterialsand configurations.

_'_ Idealseal materialscan be describedbut very few materialseven

approachingthe idealare available. The four characteristicsof an

idealsealmaterialare (1) chemicalinertnessin combinationwith

propJllants,(2) usabilityover a wide temperaturerange,(3) _Jftness

or complianceto achievegood surfacematingand (4) resilienceor the

abilityto maintaina spring-likebehaviorso that in spiteof temperature

and dimensionalchanges,adequateloadis maintainedat the sealinginter-

face. Sinceno such idealm_terialis available,most seal designs

reflectthe designers'attemptsto overcomethe shortcomingsof existing
materials.

Seclsare fabricatedin fourways: formedin place,cut fromsheet,

machinedfromstock,and molded. Formed-in-placesealsare injecteddS a

viscousliquidsuspensionwhich cures in situ. To be most practicalthe t

polymercompoundmust cureat room temperature.Channelsmustbe provided

for the disp]acedair and excessinject to escape,hence formed-in-

placesealsare used of_lyas externalse_lsor in partsto be assembled

laterinsideotherparts. Gasketsare stampedout from flat sheetstock.

Finalgrindingor polishingof the _heet to obtaina flatsmoothfinish

is only necessarywhere clampingforcesare insufficientto fullyyield

thematerla1. Complexseal shapesare oftenmachinedfrom stock,

especiallywhen smallnumbersare to be made frommaterialswhich can be

accuratelymachined(e.g.,Teflon). Most seals,includingo-rings,

Gask-O_Seals,Omnl-Seals,Ba1-Seals,etc., are molded.

0 O'R!ngs
The basic seal design used tn storable propellant systems ts the

B-55
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o-ring,with themajorityof o-rings_eingelastomerlc.They are used }
. in static,dynamicand closureapplicatioo The design,construction,

and use of the o-ringa_ well characterized,one good sourceof data

., being the ParkerSeal CompanycatalogueNo. 5700 for elastomericseals.

Other sealcompaniesprovidedesignand applicatiJndata for specific

/ o-ringsand applications.

As discussedearlierunder the LunarModulesystem,in somecases

existingdesigndata are not sufficientbecauseof material,propellant

or otherreasons. In thesecases the gland designsmust be alteredfor

the application.With commonlyusedelastomersthisis relatively

infrequentand MIL-Specgroovesare used in the vastmajorityof cases.

But if the materialis relativelyno,-elasticor subjectto degradation

(eitherchemicalor mechanical,as in coldflow),thendeviationsmay be

mad_ to assurecontinuedsealing. The commonestdeviationis to resort

to a highdegreeof grooveflll (lowvoid);lO0 to I05 percentgroove

fillis usedwith Teflonandwith materialswhich turncheesyor gummy

afterexposure. Groovecross-sectionshapemay also be altered,shallow
groovesof nearlysemi-circularsectionbeing usedwith non-elastomers.

%

suprisingly,many "o-rlngs"continueto seal in staticapplicationsif

: theyare not opened,subjectedto excesspressures,or temperaturecycled,

even after loosingall mechanicalintegrity.

Omnl-Sealand Bal-Seals

A very commonTeflonseal designused In a wide varietyof appli-

i cationsis a spring-loadedU-sealwhich is installedso the pressure

i loads the insideof the seal. Typltclof thisclassare the Omnl-seals)

and Bal-seals. Teflon provides soft compliance at the sealtng interfaces

while res11IenceIs providedby garterspringscontainedwithinthe seals.

, Figure 3-15 shows a cross-sectional vtew. In somecases these seals can

'.I be usedexactlyas o-rlngs_re,but theycannotbe stretchedverymuch so
I

only glands permitting Insertion without appreciable stretch are suitable.

)
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'._ plasticseal
_.: / garterspring

•" /
_" /f . , i / J i" ,/ _ . _/.- 1,1 I/-7/_ i//_

.- f/'<;'2,_2,.S,'_d,;_,''/.. ..;>I,<..,,'../>/,-.2.,
">"i'1 >C.5. v'/ /."/, " .... " i -. " "

} ,¢1

Figure3-16. PlasticSpring-LoadedSeal

_ Gask-O-Seal

-. _ Anothersuccessfuldesignusingelastomersis the Gask-O-Seal

device,a proprietarydesignof the ParkerSeal Companywhich is also6

made as Still-Sealsby Still_a_Rubberunder licensefrom Parker. This

, ; is a metalor rigidplasticplatewith elastomersealsof specialcross-

sectionmoldedand bondedintogroovesof the desiredseal pattern.

I A]mostany size and shapeof seal, regardlessof complexity,can be made
and prol,erinstallationis assuredsince the .,ealis fastenedin the

groove;it cannotpop out of non-circulargroovesas c_n happen,some-

timesunnoticed,duringassemblyof o-rings. ;e.:,;_can be fabricatedon

eitherone or both sidesof the plate The plate,when properlyaligned

with dowelsor otherreferencesurfaces,assure_placementof the se._Is

e_actlywhere intendedwith no aci.Aentaldisplacementduringthe tigh_en- d

Ing up process. Exactlythe correctdegreeof sealcontpressionis a:_t-- j

matlcallyobtainedwhen the plate is fully matedbecauseit is controlled

by the grooveand seal cross-sectlonsand is independentof installation

proceduralerrors.

Potymeric Gaskets

Flat gaskets are used either against flat sealing surfaces or

against serrated surfaces. High clamping forces _re necessary to achieve

a seal and to hold the gasket in place against flutd _ressure. Sometimes

ton_lue-tn-groove designs are used.
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An interestingvariationon th_ conventionalgasketdesignis that
" usedin the Agenaoxidizersystem. Theseare thinTeflongasketsconfined

betweensteppedflangeswhic,_;_avca seriesof U-typeserrationson each

face. This sealhas beenextremelysuccessful. (Staticsealson the

? fuelsideof the Agenasystemare conventionalEPR E515-8o-rings.)

- MetalSeals

Muchof the presentday technologyof metal staticsealswas

developedfor rocketappl4cations.Maintenanceof resiliencyover a

wide temperaturerangeand greatercompatibilitywith propellantsin

comparisonwith elastomerswere the incentivesfor this development.

On the otherhand,metal sealsare more expensiveand much less compliant

thanpolymericseals. The highercostof metal seals is a resultof

the greaterexpenseof machiningmetalsas comparedwith moldingpolymers.

As a generalrule,meta' se_Ismuch be machinedto closertolerancesand

" to betterflnishe_thanrequiredfor polymerseals if reasonablylow

leakageratesare to be obtalnea. In some casesa secondarycost

incrementIs incurredbecausefew metal sealsare reusable,due to

" yleldingand sensitivityto scratches,whereasma.tyelastomerseals

can be reusedif undamaged.

All metal sealsare eithersoftmetals,soft-metalcoated,or

usedso as to achieveveryhlghsealingstresses. Softmetal flat

gaskets(typlcallyas II00or 1060 aluminum)clampedbetweenserrated,

ralsed-faceflange_have see_some usagebut tend to leakif temperature

cycled. S_ring-loadingthe bolts (suchas with Bellevlllewashers)has

provensomewhatsuccessfulIn maintainingloadsas temperaturesvary.

Pressure-loaded U-seals of many configurations havebeenmarketed. M_ i
of the :uccessful designs have the sea!_ng surfaces plated wtth gold,

stlver, copper, Teflon, or other soft mater!a1. Perhaps the most wtdely
used are the Harrt_=: "_' seal and Lhe North Amertcai_Rockwell "Naflex"

sea|s. Recently a numberof metal "vee" seals have been used with

success, someof these belng customdesigned and fabricated for specific

applications by the systenl contractors. Low leakage rates (1 x 10-3 sctm
or less) are attained if the seals and seal mattng surfaces are flat and

fr_e of scratches. _)
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; _ Conoseal

, An industrialall-metalsealwhich has enjoyedconsiderable

: successis the Conoseal. Thissealexploitsthe veryhigh localline

stressesgeneratedat the edgesof a narrowBellevillcc:;ingwhcn it is

_ clampedbetweentwo beveledsurfacesand forcedsurfacesand forcedinto

a flatterconeangle. This stressis substantiallymaintainedat low or

high temperaturesas an intrinsicpropertyof the mannerof loading.

Theseseals requirespecialflanges,are availableto 12-inchdiameterI

or larger,and are usedboth in flangedand screwedconnections.

FlaredSeal

, StandardMS flaredtubingfittingsdependupona metal-to-metal

seal whichtends to developleaksat extremetemperatures,howevera

low-cost,soft-metal(a_uminumor copper)insertis marketedby Voi-Shan

which somewhatincreasesthe 3eaK-tightness.This conicalseal fits

betweenthe flaredtubeend and tne conicalfittingsurface. Voi-Shan

insertsshouldnot be reusedif reliable,leak-freeserviceis demanded.

These insertshavebeen ,Jsedin a numberof aerospaceapplicationssince

, the early Atlasmissilesystem. Theyare standardpart__t Convair-

Astronautics(fromwhom Voi-Shanis l_censedto manufacturethem)and

McDom_ell-Douglas(St.Louis). Verylow leak ratesare obtainedif the

seal an_ matingsurfacesare not corrodedor scratched.
• |

A numberof organizationsInclqdingAeroquip,JPL, Grumman,etc.,

havemade flaredtubefittingswith o-ringgroovescut intothe ;.cveled

; sealingsurfaceso polymerico-ringscouldbe used to enhancesealing.

These fittingshave provento be very reliableand leak-freeprovided

tolera,lcesare held. Especially importanthas been the improved

i retentionof leak-tightnessundervibrationcomparedto conventional

fittings.
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AFRPLBobbinSeal

An interestingmetal.to-metalstaticseal developedfor the A_RPL

by the BattelleMemorial_nstituteis the "Bobbin"seal shownin Figure

3-17. Reference57 outli_esthe developmentof that seal. So far it has

seenonly limitedservice. One applicationwas in the I/4-1nch,high-

/ pressurenitrogengas linein the MMBPS. In earlytests at TRW the

measuredleakrateswere about 1.4 x lO"4 scc/hourof heliumat an

averagepressureof 2000 psig. Later,acceptancetestsof production

hardwareyieldedleakratesnear the limitof massspectrometerdetecticn.

This fittingwas made of 347 CRESand the bobbinwas made of CRES then

nickelplated. Sealingsurfaceswere machinedto a 32_-Inchfinish.

Figure 3-]7. ¢_PL "Bobbin" Al|-E:tal Static Seal

.I
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3.2 Advanced S.vstems

' Systems which are not operational or are in the development stages

are discussed brtefly here. Table 3-3 lists system valves in these

systems and the basic attributes of these valves. As seen from the table,

relatively few known systems or applicationswere identified. Many

/ companies are presently working on new applications and systems, _ny

associated with Space Shuttle, but, understandably are not in a position

to di_,ulge information because of the competitive nature of this activity.

Ih most cases, the inference Jppears to _e that most hardware is based

on existing types of hardware and state-of-the-art sealing techniques

are used. Other systems presently in manufacture, but not in the table

include the Viking ACS system, Ytktn; L6nder and U.S. Com Sat. Syste_

details are not available for this report. Some cf the systems are

briefly discussed below.

}.
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• i i

Pressu_ Nomlnal LeakPate Spec.

Rate[ a,erl.SeaI con.g. Cycle
contlg. Test Test Allowable Life

J Fluid Pressure Rate Req'd.Psig Lb/Sec Psi.q SCCH

i i =, , J w
300 O.2?0 lefl on F1at 304L Flat GN2 250 5.0 25,000TFE

O.lOl (
I

300 19.6 ) Teflon Ring 316 Butterfly GN2 300 10.0 2(]0
i AF..E-124D

12.8 , _eflon

85 4,6,7" I Teflon Ring CRES 8ut_rfJyi GHe 85 3 x 10"lO' 1000
Valve
D_ameter

60D 0.015 L EPT/HYSTL Flat 304L Flat 8N2 600 0.5 60,000

600 0.02 Teflon Flat 304L Flat GNz 600 1.0 103,000

rd 255 0.050 Teflon Flat 304L Flat GN2 255 5.0 1.5 x 106TFE

rd 255 0.0025 Teflon Flat 304L Flat GN2 255 5.0 I .5 x "-106TFE

380 Teflon Beveled Stel l I te Codcal GN2 380 S.0
TFE Dtsc No.6 poppet

Ltne Size) Teflon Flat 304L Flat GN2 250 10.0
i .3" ) TFE

ii i i ,, , , ,

Table 3.3.

Valves in Adwnced or Km,-Operattonml System i

(Btpropellant snd Pbnoprol_llMt) 1

/ B-63 FOU3OUT JlmJkN_ !

_ mmm=lm

I g74005081-486



TRW is presently testing a Posi-Seal valve for t3c _vanced Delta

engine under contract to McDonnell-Douglas. Nftrogen tetroxide and

Aerozine-50 propellants at 300 psia are to be contained over a temperature

; range of +25 to +225°F. The feed |ines are 2.00 inches in diameter.

,_ • Leakage allowances of lO scc per hour of nitrogen and lO and 30 psig have

> _ been specified. The total cycle life is set at 200 (wet plus dry); so

far the valvesin testhaveexceededI000cyclesdry successfully.A
..

two-yearstoragelifeat -35 to +160°Fis specified.

Figure3-18 showsthe sealconfigurationin thismodifiedbutterfly-

typevalvedesign. A Teflonringbackedby an elastomero-ringis the

mainbutterflyseal. (O-ringsare usedalso to sealshaftsand as static

_ealsbetweenthe valvebodyand ducting.) All O-ringsare of AF-E-124D

elastomer(12 usedper engine).

BUTTERFLYDISC

FLUID PRESSI
i

I

t •

O-RING

I

L

' Figure3-18. SchematicDiagramof Posi-Seal",_,ve_ _

_ ValveShown in Closedand PressurizedState

Q
mR _ _
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Titan Pre-Valve (Ref. 68)

A new valve developed by the Hartin-Marietta Corporation will

replace shearable disc valves for the Titan launch vehicles. This valve

is a motor operated valve in 4 in., 6 tn., and 7 in. sizes. A captive

Teflon seal is used as shownin Figure 3-19 A typical pre-valve (6"

diameter) is shownin Figure3-20 . The Teflon is pre-stressed in the

cavity by forces on the backup ring, the ring being forced against the

Teflon by a threaded retainer. The stress generated by the backup ring

is approximately 1000 psi; during valve closure, the butterfly is loaded

against the Teflon seat by an eccentric shaft. Teflon st;-ess in this

condition is approximately 3000 psi. The seals have showndegradation

during cycling, but cleanliness is important since contamination can

impair the ability to seal helium. The cycle life requirement is 50

cycles, but the cycle ltfe margin requirement (at ambient) is 1000 cycles.

Oneunit has completed ]100 cycles successfully. The unit cyc)e life

requirement is 20 cycles wtth one unit completing 20 cycles and another

200 cycles successfully. Measured leakage data at 16 psid with helium

ranges from 1.06 x 10-6 to 1.9l x 10-8 on various valves in forward and
reverse dtrecticns.

) .
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|

F|GURE 3-20. TYPZCAL ,_OTOROPERATED14_ PREVALVE

._,qo_17X 8 (6" ¢_ZT)

)
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Mariner'75

_' A relativelylargeversionof the Parkersolenoidvalveused for

P-g5 and other applications (effective diameter of 1.297 inches) is
F_currentlyundertest at JPL for use as an isolationvalve in the feed-

_ linesof the Mariner'75. This valvealso uses a 12-milwide landof
/

flat-lappedTeflon. A net springloadof g.5-poundsis transmittedby

": the poppetto the seal. Ratedat 300 psigover the temperaturerangeof

+30 to +150°F,thisvalve is specifiedto leakno more than lO scc per

hourof ambienttemperatureheliumat any pressurebetweenl and 250 psig.

-,t

i AtmosphereExplorer-OrbitAdjustPropulsionSystem(AE/OAPS)

TRW is currentlydesigninga monopropellantsystemfor the AE/OAPS.

This is essentiallyan a11 metal systemincludinga propellanttankwith

a metal diaphragmand a11 brazedjoints. The onlyexceptionsare the

thrustervalvesealswhich are EPT/HYSTL(AF-_-,JI)in the dual poppet

solenoidvalvedescribedin Section3.2. The tankisolationvalve is a

P-g5 typevalve of the typeshown in Figure3-13 This valve utilizes

_ a softpoppetseal of Teflonas describedin Section3.1.

M_a_iquardt_CLassifledSystem)

) The MarquardtCompanyis currentlydesigringa monopropellant
!

._ hydrazinesystemfor a classifiedapplication.Staticsealsare t
expectedto be EPR o-ringsat all connectionswhich are not welded.

I An exceptionwill be at the enginevalve interfaceswhere spring-loaded
Teflonseals (eitherOmnlor Bal) probablywill be chosen. No valves

havebeen selectedat thiswritingbut the candidatesfor the engine

valvehavecapturedo-ringseats.

B-69 i,

• II ..........

1974005081-491



.... APPENDIX C

_, :. _,
'-: ,, "_ CONTAMINATION SENSITIVITY TEST PLAN

-/

.." 1. PURPOSE

6

_. This plan describes a proposed test method for determining the

'_-" relative sensitivity of candidate seal designs and materials to degrada-

•_" ,,: tion in performance and integrit,rwhen exposed to fluids containing par- ""

" _ ticulate contamination.

t Z. SCOPE

- _ The proposed test method described herein is apFllcable to a wide

'_ range of fluids (inert gases, referee fluids, and certain liquid propel-

, lants, ifthey are compatible with the rr_,terialsof construction) at any

' temperature suitable for *,L-_cai. Seal size shoul.d not be a limiting

, factor, but scaling methods would have to be developed if tests at other

than full size were undertaken. Actual hardware (valves, etc. ) can be

used as the test fixture, provided the test replica can be installed in

place of the hard seating surface and provided tha_ acceptable control of

• such variables as concentricity, etc., can be maintained; otherwise a

precision test fixture designed to accept the test repiica and test seals

is recommended.

3. INTRODUCTION AND BACKGROUND

Development of seals for fluid control devices such as valves,

regulators, and so forth, has been largely an empirical process. Few

purely analytical approaches to design and verification of performance,

llfe, or reliabi!ityhave been successful. This is especially true r,fcon-
b

lamination sensitivity assessment. I

Sensitivity of a seal to the presence of contamination in the fluid

being controlled is evidenced by leakage, wear or other darnag_, and

jamming. The Ideal sensitivity assessment method would allow cot,n-

petlng candidate seals (and seal materials) to be evaluated for relative

Immunity to the presence of particulate contamination. (Non-particulate

contamination, aurA, as greases, moisture, etc., are not considered in

thls document. ) It would perform the evaluation under controlled

|C-I
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conditions so a direct correlation could be obtained bet.reeldegree of

degradation and the pertinent parameter values _sealdesi,_n;rnateri_!
5:

properties, operating conditions, particleproperties, e'c.).

Most of the methods used in the past have involved a significant

number of unknowns. Typically a fluidcontaining some artificially

induced contamination is flowed through or past the seal under test, and
/

the wear and leakage are measured after a certain time of exposure has

elapsed or a number of operating cycles have been performed. Contact

between the particlesand the seals is by chance and usually undetected

except by inference from the damage observed after the test. The parti-

cle population may be entirelyrandom (typically,Arizona Road Dust, in

which case correlation with particle size and shape is impossible) or a

narrow cut of sizes (typically,spheres of which a high percentage fall
i

within a radius of each other in size, in which case the results are of

limited meaning).

4. TECHNICAL DISCUSSION

4. l Particle Descriptions

• l_rticles found in aerospace fluidcomponents are usually com-
t

. prised of:

; • Metal compounds (rustand other corrosion products,
i grinding wheel dust, weld slag, lapping compounds)
!

• Carbon (smoke deposits, combustion products)

• Earth substances {silicondioxide, glass, diamond dust, etc.) t

• Metals (machining chips and shavings, sliversand particles
broken, extruded or worn from rubbing or fatigued surfaces,
plating,solder, weld splatter,braze droplets, etc.)

• Polymers (slivers,flakes and shreds cut, extruded, or worn
from plasticand rubber seal, hoses, diaphragms, etc.)

• Protein {hair,flakes of skin, insects, plant segments)

• Crystals (non-volatile residues from solvents, etc. )

• Fibers (cotton, wool, nylon, paper, wood, etc. ).

Particles come in a wide range of sizes, shapes, and hardn_eses.

In aerospace fluid system practice there is seldom any concern about "_

partlcles below 5 r_crons (_) in largest domenslon. Figure C-I ohows

C-Z
-4

1974005081-493



0
a. Prismati(.(crystal) b. polyhedral(crystal) c. Spherical

(cry_tal) fiber) fiber)

d. Cylindrical

(sharp-edged) (round-edged) (spongy)

e. Compact Irregular

• f. Flake g. Sheet h. Spiral

3

I. Nodul&r J, Conglomerate k, Irregular

Figure C.1, Classes of Parttcle Shapes ;_
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"- the different classes of particle shapes usually encountered. It is to be

t} recog_'Az-.d_ of courRe_ _hat theee are _*'=* ............... y divisions,_.u'" real parti- ,"

cle populations show infinitevariety which results in continuous shadings

of shapes from class to class. Hardness ranges from the very hardest

: known substances (diamond) to very soft (greases and oils)with which

_ this discussion is not concerned.
t,

.= Metallic corrosion products are crystalline in form and tend to

" i grow to large sizes if undisturbed; many are very hard compared to poly-

meric seals but frangible. Rust, especially, is easily crushed or abraded

into tiny particles so that the preponderance of the population (in terms

? of numbers) is small (below I0_). The larger metallic compound parti-

cles which form compact crystals may appear to have had the corners

broken off. Those compounds which form into a needle-like crystalline

structure usually are broken into segments if worked...

Carbon tends to be deposited out as tiny, soft clumps of the amor-

"" phous form but can appear as hard, rounded nodules.

Earth substances also tend to appear as compact shapes with edges

largely broken off, but the size range is very wide and the frequency of ,_

occurrence falls into the log-normal category (Inany more small particles

compared to large partlc]es). Glass is an exception since most glass is

newly formed and has not been flnely ground. Glass particles are often

sharp edged and the shapes include needle-like and flake-like pieces as

well as the compact irregular ones. Diamond dust and carbides (from

tools or grinding operations) are generally comprised of large-sized

particles of irregular_ compact shape, Earth substances are almost all

very hard.

Metal particle populations may not be skewed so strongly to the

small size end of the spectrum. The size and shape of metal particles

are strongly influenced by the particular metal and the manner in which

they were generated, l_rger machining chips and shavings have their

own characteristic shapes (usually flat or spiral), which are broken down

to charp-edged compact irregular particles. Large pieces of plating

come off as thi_ sheet-like pieces, which may be broken down to compact

particles. Wear psrt_c.les tend to be smaller; the shape depends on the
J

kind of wear mechanism which is active (adhesive wear and plowing

C-4
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creating very irregular to fibre-like particles, while abrasive wear .

, _,. results in more nodular __hapes of _pong 7 agglu_lera_ed smaller particles).

Solder, weld splatter, and braze droplets tend to be !arge and rounded to

:. spherical (due to the surface tension forces. ) Metals are hard compared

,.: to polymeric seals.

: Polymer particles also tend to be large, irregular, and of the

same range of hardnese as polymeric seals. Rubbers, especially, tend

:,: to form stringy ligaments or loosely connected fragments, except when

" the core is filler particles; these smaller particles tend '3 compact

irregular.

Skin flakes appear in all sizes, but hair and insect parts tend to be

large. Plant segments are of irregular shapes although some are close

to being spheres or nodules (spores, pollen, etc. ) These protein particles
ar; also in the same range of hardness as seal materials.

Crystals deposited out upon the evaporation of solvents, etc., cover

the full range of size and hardness and tend to be frangible.

_- Fiber particles tend to be long and either straight or curved, but

fragments of wood are clumps of fibers and so often are close to pris-
l,

ma*.ic or sharp-edged irregular in shape. Fibers usually are somewhat '

harder than the softer seal materials.

_ Not all particles are of a simple substance. Composite particles
r

_ frequently are seen, especially/_ several n_echanisms are operating
simultaneously to generate particles, and one or n_o re of them produces

: a substance which tends to form a matrix.

Table C-1 summarizes the more common shapes encountered for

' each material and mode of generation.

4, 2 Particle Origins "

', Particles are either generated within the components or are

! carried Into them. Some particles remain after post-mar-:facture and

assembly cleaning. Others are carried in by the fluids or may enter

during periods when ports are open. Particles are generated by corro- _

sion, wear, ext_aslon, etc. Design, nmrmfacturing precision of the

C-5 i
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_.- compoaents' moving parts, and the techniques used in assembly, adjust-
' i

:_ '.,. rr_ent and storage play maj,__ ro!e_ in dctcrrr,':_[ng ,_uw many and what

'. kinds of particles are generated.

4.3 Role of Particles in Degrading the Performance a: d Life
Expectancy of Seals

/ Particle_ increase seal leakage x_*_s by reducing the corfformation

~ of the seal to the surface. They do th's by mechanically separating the

seal from the surface or by damaging either the seal or the surface.

When hard particles are trapped between soft seals and hard surfaces,

the seal is inaented so a flow path is crea_ed adjacent to the particle.

-. Under high load_ or :epeated loading, the indentation may become dee_

enough for the particles to become imbedded in the seal. Permanent

(non-recoverable) damage caused I- particles falls tn_o the categories

of cutting, scratching and wear. Usually only the soft seal is cut, but

either the seal or surface may be scratched or worn. Erosive wear is

a special case where the damage "s caused by impingement o _. a high

velocity fluid stream containing particles. Some s_als which act by

scrubbing or other motion of close fitting parts may become jammed if

• large particles become wedged between the moving members.

i 4.4 Sensitivity Relations

The degree to which a seal is sensitive to particles depends on a

_' compiex interaction of a group of parameters including:

• Seal material hardness and cut growth properties (at the
' temperature of contact)

• Seal design (width of land, redundancy of sealing, _tc. )

, • Particle hardness_ shape and slze ratio to critical seal
; dlmenslon-typically land width) !

! • Load (_tress level)

1 • R,_petition of contact
i

• Fluid flow conditions near and over seal (as it affects
{ rec_rculation or deposition of particles)

• Scrubbing motions.

t

t
!

C-7

] 97400508] -498



5. METHOD

: The t-,,.... •,v,_uwx,E paragraphs desc:-ibe the proposed methodology for

characterizing particles, subjecting seals to the effect of these particles,

and measuring the resultant leakage and damage. An empirical approach

is utilized, as contrasted with analytical procedures. The intention is

to provide a method which is suitable for evaluating a single seal, alter-

_ native materials for use in a given seal design, or compe:ing candidate

seal designs. Mechanical effects only are avaluated, no .ncluding

erosion by impingemez,t. Chemical reactions are not measured.

Basically the n,ethod involves the creation of permanent contours

on the hard mating surface (against which the seal bears) whi=h are

mechanically equivalent in size, shape, an position, to hard (incom-

pressible} particles which might become trapped on the surface during

closure. Since the contour is an integral part of the seat and unchanged

by repeated closure, the variables of particle size, shape, and location.*

Figure C-2 graphically summarizes this proposed technique. (Previous

experiments have attempted to achieve these same end_ by glueing parti-

cles on seats, but the impermanency of such an arrangement was a major i

• flaw in the methe:l. ) By creating a set of hard metal replicas which can

be directly substituted for the seat in a test fixture, any number of can-

didate seals can be subjected to the mechanical presence of exactly the

same particle shape and location. After repeated closing of the seal

against the replicas, the leakage increase and wear of each seal can be

evaluated and directly correlated with the known and controlled particle

conditions represented by the replica countour.

5.1 Characterization of Representative Particles

Since the hardest particles represent the "worst case, " the only I

variables needed to characterize particles are size and shape.

Size is a primary variable of interest and can be he ndled as a ratio

of some critical seal dimensions (notably land width and thickness for

*Note: Although this procedure is aLrned at evaluation of contamination
effects the basic method is equally suitable for evaluating the

effects of seat condt.tions (scratches, etc. ) cn seal performance iand llfe.

C-8
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circular seals of rectangular cross-section). Probably three sizc ratios

y. woald be sufficient to characterize the response of seals tn a _rt!c!e

,, population; only the larger size ratios are significant since very small

particles have little influence on compliant seal leakage or integrity.

Reducing the infinite array of real particle shapes do_-n to a set of

_ representative shapes which is small enough to be testable presentsi /
_ som=_thing of challenge. Itcould be argued that a minimum set is com-

prised of two worst cases: long cylinders {fibers)and an acute 3-sided

pyrarr_-l. The long cylinder represents allthe fibers and long particles

which can bridge across seal lands, and the pyramid allthe thick, sharp-

edged particleswhich tend to indent, cut and wear seals. Although this

narrow representation is probably too severe a limitationto be realistic,

it does seem to present the worst cases in a set which is easily testable.

It is recommended that consideration be given to analysis of actual

particle samples, if this is practicable, results of which can be used to

choose a more representative test set population if so desired.

5.2 Replication

To have an unchanging suzface contour representing the presence _:

of a particleon the hard seating surface, itis necessary to fabricate a

replica of the surface. Fabrication of such replicas is yet to be demon-

strated but at least one of the following methods should prove feasible:

• Electroless plating

s Spurtsring

• Die casting,

The nmjor problems to be surmounted are the small size of typical
contamination particles and the tendency of the particles to move during

replication. Replicas should be made of tough, wear-resistent materials

such as chromium, nickle, or similar me_als.

5.3 Test Setup

The test setup is comprised of a test fixture, actuator, measuring

equipment, and test sets. Basically the test fixture shown in Figure C-2

is a heavy-duty poppet valve but ball valves, butterfly valves, etc., h

could be used. The poppet seals and seat are interchangeable with any

C-IO
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of the test set seals and seat replicas. Test fluid is introduced via the

, . inlet port and exhausts, when the UouDet... iS o¢¢.... the _eat, "¢ia "_'-,,,_outlet.

With the poppet closed, seat leakage is measurable at the outlet if a

suitable leakage detector is connected; for large leak rates tkis could be

a bubble collector and for low leak rates it could be a tracer gas mass

spectrometer (sniffer). An appropriate actuator connected to the actua-

tion shaft is necessary to cycle the poppet.

Figure C-3 shows a reconxmended setup for testing. In this case

it is assumed that the test fluid will be an inert gas, preferrably helium.

: Alternatively, nitrogen or other gas or liquid (including propellant) could

be used as the test fluid.

Containment of the test fixture within a conditioning chamber is

indicated. This would permit controlling the ambient temperature (and

pressure, if desired) of the fixture. A temperature conditioner in the

inlet line is for the purpose of the test fluid temperature. A very good

i filter, rated well below the test particle size, should be installed in the

: inlet line to be sure actual particulate matter is excluded from the seat

since such matter might cause leakage and/or damage which would

invalidate the test data.

Not shown but essential to wear rate measurement is a precision

scale and rnicrophotography equipment.

5.4 Testin_
I

Five potentialfactors in the testmatrix (seatdesign, seat material,

particleshape, particle size, and particle1ocatlon)have been mentioned

above. In addition, there are a rmmber of other potentialfactors such

as temperature, load, rate of closure, test fluid, and amount of _

scrubbing motion. The totaltest matrix design must be derived with ,, i

consideration for the schedule, cost, and other programmatic factors.

Generally, it turns out that an optimum test program star_s with a

series of screening tests to eliminate the least worthy designs as quickly

as possible. £hese screening tests usuaUy are done at some relatively

severe combination of conditions; otherwise, not enough candidates may _

be eliminated. (In some cases, however, there are few candidates to
A

( start with so all may be subjected to the full matrix of conditions. ) One _

(3-11
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step in designing the screening test program to minimize its magnitude

is the establishment of whatever _m__andatery pcrformance goals are

deemed necessary. Seals which fail to achieve these "go/no-go '1 stand-

ards are dropped from further testing immediately. Usually these are

relativelystraightforward standards such as an upper limit on leak rate

at prescribed conditions of pressure and temperature or a certain amount

of wear. To make these standards most effective in minimizing test

effort some compromise must be struck in the frequency of making leak-

age and wear measurements. If these measurements are time consuming,

it may be most economical to take them at infrequent intervals, accepting

the fact that extra tests might be made beyond the necessary minimum at

which the go/no-go standards were exceeded. Conversely, _f measure-

ments are quickly made (or continuously made as might be the case with

leak rate), and cycling tl,e fixture is laborious, then frequent checks of

performance may be best. Only the specificcircumstances of a given

test series can be used as guidance in optimizing the testing schedule.

Two kinds of test programs are common. One seeks to 1__arnthe

ultimate capabilitiesof the candidates. Thi3 type of program may be

very long and expensive ifgood seals are available since each candidate

is tested for as many cycles as ittakes to degrade itbelow the set

, standard of performance. The other measures whether the candidates

can meet the arbitrary goals of a specifiednumber of cycles which may

be set far short of the candidates'ultimate capabilities;this is often a

shorter program since each seal is tested only untilitfailsor reaches ,

the goal.

Stillanother dimension in designing the test matrix is the "mix"

of cycles at each value of the testconditions. In some cases there mav, "

be a simulated mission profilein which the proportion of cycles at each i

condition {oftemperature, for instance), and the length of the open and

closed periods, is tllesame as anticipatedin flight. At other times there

may be some mathematical basis in statistlcalanalysis for choosing the I
t

cycle distribution. Or, as mentioned above, everything may be set at

the "worst case. "

Performance of the tests can be expected to be straightforward

with little technical diHiculty. Depending upon the method chosen, leak
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_ rate measurement may be so,newhat problematical unless the down- ,:

stream side _f the se_t is fu!ly vented (or a good vacuum drawn) after
.,_

the c_osure portion of the previous cycle. No .highly permeable materials

should be used in the downstream circuit if very high resolution measure-

ments are to be made since such permeable materials will outgas for

, some time after closure.
/

Seal materials conform so leak rate will gradually decay as the

seal conforms slowly to the seat. This may be somewhat offsetby a

tendency for an increase in leakage with materials which undergo a sub-

stantialstress relaxationin designs with Limited deformation (stroke

" bottoms out against metal stops). These minute variations in leak rate

willnot be observed unless the measurements are very sensitiveand

prolonged.

5.5 Data

lest data include descriptions of the matrix test conditions (sum-

rr,arized in Table C-2_0 the schedule of cycles performed, and the

measured wear and leak rates.

• Table C-2. Matrix Parameters to be Recorded
as Part of the Test Data

Seal design
Seal mate rlal

i

Scrubbing length
Concentricity error
Limit of stroke
Temperature of seal
Test fluid
Test fluid pressure (upstream)
Test fluid pressure (downstream when open)

Test fluid temperature I
Test fluid flow rate (full-open position) ,
Closure rate or program
Equilibrium IGad (sires s)
Cycle description: time held open

time held closed
Replica: Shape

Size
Location

I
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Leak rate data usually require little analysis except perhaps some

smoothing and change of _nits, but wear data at,." _a_ to -_*_---

late and interpret.

Wear is exuressed as weight or volume removed, oz change in

dimension. Wear testE are often made under simulated use conditions,

_': i.e., while the seal is immersed in the fluid to be contained in service.

Weight, volume, and dimensional change data taken under these circum-

stances on polymer seals should always be suspect if the seals are prone

to swelling or shrinking during liquidimmersion and evaporative loss in

vacuum. Removal of a permeable seal from a inert, high pressure gas

test may result in ttballooningW_unless the pressure reduction period is

sufficientlylong for the gas to escape. Corrections of such wear da_a

for swell, shrinkage, sublimation, and ballooning are difficultto achieve

urdess separate test have provided data on these factors with all perti-

_" nent test conditions clearly defined as being identicalto those during the

• _. wear tests. Usue.lly this is best acquired on the same specimens which
"_: are to be subjected to wear testing in order to eliminate errors due to

: 4. differences from specimen to specimen, Otherwise, the wear test
. _ becomes in actuality a _'combined effects '_ test from which the data yield

a totalized number expressing dimensional weight changes due to swell

(or shrinkage) and wear as inseperable components.

Surface contour changes are another form of data which may be

taken. Generally this is in terms of the surface finish expressed as

RMS height in micro-inches, A pro£ilometer or similar device is used

for harder surfaces bat soft rubbery materials may present a problem

where surface measurements are impractical, optical methods may be

used to judge how much wear has changed the surface contours. Cur-

rently the very best techniques are lightscatteringand Scanning Electron I

Microscope (SEM) photographs. Very subtle changes can be detected

by those means but they are basicallyqualitativerather than quantitative.
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O APPENDIXE

_i MATERIALSPECIFICATIONS
This AppendixprovidespreliminaryMaterialSpecificationsfor the

recommendedSpaceShuttleSealMaterialsAF-E-411and AF-E-124D.

, _ The purposeof thesespecificationsis to allowprocurementof

thesematerials,with assuranceof materialconsistency.Since a

finalizedmaterialspecificationmust take intoaccountall the factors

in fabricationand compounding,additionalinvestigationis required

to ensurethata realisticspecificationresults. This effortis being

conductedunder Air ForceContract,by TRW Systems.

!

At present,TRW Systemsis the sole supplierof AF-E-411and

AF-E-124Dmaterials. MaterialsobtainedthroughTRW Systemswill

conform.:to thesepreliminaryspecifications.

\
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_: APPENDIXE-I

_ MATERIALSPECIFICAT;ON(PRELIMINARY)
RUBBER,EPDMCOMPOSITE

.. _ DESIGNATION:AF-E-411"

/_ _! I. SCOPE

" ,_ l.l Scope. This materialspecificationestablishesthe require_nts

i for an ethylene-p_pyleneterpolymer(EPDM)elasto_r compound(see6.3)

• intendedspecificallyfor seals.

? 1.2 Classification.The designationof thismaterialis AF-E-411.

I 2. APPLICABLEDOCUMENTS
SPECIFICATIONS

_ Federe1

, 0-A-51 Acetone,Technical

_-I-735 (C406426) Isop_pyl Alcohol

Military

MIL-P-26536 Propellant,Hydrazine
OTHER PUBLICATIONS

AmericanSocietyfor Testingand Materials

ASTM D 15 Com_und and SamplePreparationfor

PhysicalTestingof RubberP_ducts

ASTM D 395 CompressionSet of VulcanizedRubber,

V_stsfor

ASTM D 412 Tens;onTestingof VulcanizedRubber

ASTM D 624 Tear Resistanceof VulcanizedRubber,

Tests _r

ASTM D 1460 Changein Lengthof an E1asto_ric

VulcanizateResultingfrom Immersion

{-) in a Liquid,Test for i
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)
American Society for Testing and Materials (Cu,t'd)

ASTM D 1708 Tensile Properties of Plastics by Use

of Microtensile SDecimens, Test for

ASTM D 2240 IndentationHardness of Rubber and

Plastics by Means of a Durometer, Test

for

3. REQUIREMENTS

3.1 Material. The material shall be ethylene-pronylancterpolymer

elastomer formulated and processed to meet the requirements of this

specification. All materials shall be of high quality and suitable for

the purpose intended and free of impurities reactive with hydrazine.

3.2 Composition& Physical Properties. The composition and

physical properties shall conform to the requirements specified i_

Tables I and If.

)
Table I. Formulation and Cure

i i

Component Parts by Weight
ii i Jl i

Nordel )635, duPont 100.0

Cab-O-Sil M-5, Cabot Corp. 25.0 I

|-3000 Resin, DynachemCorp. 25.0

Ieflorl Powder T-BA, duPont 5.0

Ztnc Oxide, Baker Reegert 5.0

Ca]ciumOxtde, Baker Reagent 5.0

Vinyl Stlane A-172, Union Carbide 1.0

Di-Cup R, Hercules Z._.__O

Total Parts - 168.0
i

Cure - 30 Mird350"F

Postcure - 2 hours/Z25°F
! I i •, i ii

L_

|
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Table ii. Physical Properties

Y

Froperty Requirement

Original:

, Tensile strength, psi, min. 2100

Elongation, %, min. 170 ± 25-, J

Hardness, Type A duroneter 88 ± 5 ,

Tear strength, Ib/inch, min. 200

Following exposure to conditions as specified:

Compression set, 22 hours at 16OF,

24-hour rest, % max. 25

Fluid resistance, hydrazine immersions,

, 96 hours at 16OF:

Compatibility_ pressure rise, psi, max at

160F (greater than control container) 5

, Volume increase, % max. (measured wet at 75F) 5

,. Tensile strength, % of original value (at 75F) 75-125

Elongation,% of original value (at 75F) 75-125 t

J

!
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3.3 Workmanship. Each molding shall be free o_ functional defects,

foreign materials, and shall be uniform in quality; it shall also be free

from mold fl_sh unless othr_rwisepermitted by the specific test method.

There snaii be no visible evidence of surfac= irregularitles,such as

unbonded sections, excessive holes or dents, blisters, and pits greater

than 0.005 inch in height or depth. Small surface blemishes less than

0.005 inch in height or _epth shall not be allowed when grouped closely

together and cover more than .3 percent of the total surface area.

3.3.1 P.gmentation. Markings on the rubber surface which appear

to be two dimensional (i.e., appear to be a discoloration rather than an

inclusion) shall be acceotable as long as the following criteria are met:

(a) The discolored portion does not affect the flexed mo_oholoqy

of the rubber.

(b) The discolored portion does not react with hydrazine - same

compatibility requirement as in Table I.

(c) The dlscolored portion does not show any tendency, upon

repeated flexing, of separating from the rubber substrate.

4. QUALITY ASSURANCE PROVISIONS

4.1 Qualification. Materials supplied to this specification shall

have been qualified in accrrdance '_ithall of the requirements of this

specification. t

4.1.1 QualificationCertification. The supplier submitting mate-

rial for qualification shall provide certificatio'nthat the materials ',

submitted conform to all of the requirementsof this specificationand
(

represent normal production run material.

4.1,2 QualificatinnSampling. Qualification sampling shall

include two test slabs prepared in accordance with the reluirementsof

• ASTM D 15 and two molded compression set buttons prepared in accordance i

with ASTM D 395, Type I.

CAUTION: No marking shall be affixed or applied to a sample, only

to the package in which it is contained. (See Section 5

for cleaning, packaging, and marking requirements.)

E1-4
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4.1.3 QualificationTesting. Q_alification testing shall consist

of demonstration of rnnformance to all of the requirements of this

specification.

4.1.4 Qualified Status and Requalification. A material that has

been qualified in accordance with this specification require requalifica-

tion for any change of raw materials and/or processing from that used

for qualification.

4.2 Acceptance.

4.2.] Acceptance Certification. The supplier of material shall

certify that each shipment of material made to this specification con-

forms to all of the requirements of this specification. Cer'tification

shall include the actual results of laboratory tests to determine

conformance.

4.2.2 Acceptance Sa_npling.

4.2.2.1 Batch. A batch shall be the quantity of material com-

pounded on a mill at one time.

4.2.2.2 Preproduction Sampling. Preproduction sampling shall

include from each batch two test slabs prepared in accordance with the

requirementsof ASTM D 15 and two molded compression set buttons pre-

pared in accordance with ASTM D 395, Type I.

t
4.2.2.3 Production Samp]ing. Production sampling shall include

each production item.

CAUTION: No marking shall be affixed or applied to a sample or

to a molded part, only to the package in which the item

is contained. (See Section 5 for cleaning, packaging,

and marking requirements)

4.2.4 Acceptance Testing.

4.2.4.1 Preproduction Testing. Prior to the start of a production

run for each batch of material the preproduction samples shall be tested

to all of the requirementsof this specification.

f-
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4.2.4.2 Production Testing. Each production item and subsequently )

' ' the packaging for the item shall be inspected to dete_ine confo.._n..ance

with the requirements of 3.3 and Section 5, respectively.

4.2.5 Rejection. Sample material and production items failing

/ to meet the test requirements in 4.2.4 shall be rejected.

4.3 Test Methods. Qualification and acceptance testing of the

material to the requirements of this specification shall be in accord-

ance with the following:

4.3.1 Tensile Strength and Elongation. The tensile strength and

ultimate elongation shall be determined in accordance with the require-

ments of ASTM D 412, using Die "D" for the specimens. Results shall

conform to the requirements oC Table I.

4.3.2 Hardness. The hardness shall be determined in accordance

with the requirements of ASTM D 2240. Results shall conform to the

requirementsof Table 1.

4.3.3 Tear SLrength. The tear strength shall be determined in )

• accordance with the requirements of ASTM D 624, using Die "B". Results

shall conform to the requirements of Table I.

4.3.4 Compression Set. The compression set shall be determined

in accordance with the requirementsof ASTM D 395, Method B at the

aging time and temperature specified in Table I. Results shall conform

to the requirements of Table I.

4.3.5 Fluid Resistance. The procedure outlined below is used to

determine the fluid resistance and the relative compatibility of the

rubber specimens with propellant-gradehydrazine (See 6.4).

(a) Cut three specimens of the rubber from a test slab, using the

ASTM D 1708 die.

(b) Clean the specimens using in sequence a detergent solution,

0-A-51 acetone, and finally reagent grade isopropyl alcohol.

Dry for 5 minutes at ambient temperature in a dirt/dust-free

environment. Do _ot handle with bare hands.

(c) Measure the length and weight of each specimen. _/

E_-6
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•_ _" (d) Using rubber gloves which have been pre-rinsed in isopropyl

:' -. alcohol and dried, p]ace the rubber specimens into the bottom
,_ •

_c-. of an 85 cc glass Aerosil Compatibility Tube (e.g. VWR

Scientific Company Catalog No. 62810-000) precleaned and dried

• C_.' as in (b) above. The tube must have at least a lO0 psig/
_o

_ _ safety rating. The primary cap seal must be Teflon and the

_,. secondary seal shall be cut from the test slab.

(e) Add slowly 50 ml of MIL-P-26536 hydrazine to each tube

.. _: WARNING: This step must be performed with care by a propellant
handler; hydrazine is a dangerous chemical.

(f} The Aerosil Compatibility Tube _hall be fitted with all 304
CRES fixtures, tubing, gauges, and valves as follow_:

•_ To the threaded flange cap attach a "T" fitting. From

one leg of the "T" attach a I/8 inch tubing (See (g)

_: below) leading to a compound BouY_on-type pressure gauge

(calibrated in inches of Hg on the vacuum _ide and in

• _ psia on the pressure side; a convenient size is 0 to lO0

psia).

CAUTION: Do not use bulkhead fittings to interface from

pipe threads to other types such as AN, because

bulkhead fittings require O-rings for sealing.

Fitting threads shall be wrapped with TFE pipe

tape prior to assembly. The whole assembly,

prior to fitting on the tube, shall be rinsed

in isopropyl alcohol and dried (See (b) above). !'

(g) Place the Aerosil Compatibility Tube and the valve inside an

oven at room temperature. The oven shall have been precali-

brated to the desired temperature (See Table I). Pass the

I/8 inch tubing (see (f) above) through the oven wall so that

the pressure gauge can be maintained near ambient temperature.

The total volume of the 85 cc tube, fittings, gauge, valve,

and tubing should be approximately 95 cc.

EI-7
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(h) Placethe oven in a bunkeror test cellwhich has a viewing

windowthrouahwhirh fh_ n_c_,,_ gaugemay be observed.

WARNING: A powerswitchfor the oven shallbe placedoutside

the test bay in order to turn off the oven if the

pressureapproachesthe safelimitof the glass

compatibilitytube. If this occurs,the oven must

be turnedoff immediatelyinasmuchas excessive

pressurecan be quitedangerous.

(i) Connectthe valve to a vacuumpump isolatedfromthe hydra-
t

zine by a cryogenictrap (CRESor glass tubingand fittings

& from the valve to the trap)and evacuatethe apparatusfor

severalminutes or untilthe hydrazineceasesto bubble

(outgassinghas ceased). The compoundgaugemust indicatea
t

vacuumof at least 28 inchesof Hg. Closethe valveand dis-

connectthe vacuumpump.

(j) Checkthe systemfor zero leakageby readingthe compound

gaugeafter30 minutes. Eliminateany leakage. When the

systemis leak-free,turnon the oven to the calibrated

temperatureand when the oven reachesthe desiredtemoerature,

startthe storagetime.4

(k) At the end of the requiredstoragetime (or before,see (h)
t

above)recordthe pressureand turn off the oven. Cool to t

• ambie,t temperature(at leastseveralhours),recordthe

: pressureagainand vent the valve to relieveany residual

pressure.

(I) In a well-ventedfumehood removethe flangecap,decantthe

propellantand, while stillworkingin the fumehood,place

the specimenson laboratorywipingtissues(Kimwipes,Kimberly-

ClarkCompany,are satisfactory)and carefullyblot dry. Then

removethe specimens,usingthe sameclean glovesdescribed.Jn

(d) above.

WARNING: Do not use a sulfite-typepaper for blottinginasmuch _

as thispaper In contactwith hydrazlneIs a flrehazard. _) ::

El -8 }

I

1974005081-531



J.

- : t (m) Measure the blotted samples for length and weight. Calculate

_ the length and weight change. The volume change may be cal-

:i. culated from the length change in accordance with ASTM D 1460.
K_

(n) In a clean, pre-weighed round bottom flask carefully evaporate

_ to dryness an aliquot of the decanted propellant and then

/ _ calculate the propellant's non-volatile residue in milligrams

per lO0 milliliters (mg/lO0 ml) as the units.

"_ WARNING: This step must be done carefully and in a safe place by

_. a propellant handler; the procedure can be very dangerous.

. _ (o) A control propellant sample shall be processed in accordance

._ with Steps (d) through (n) exactly as abuve except that the

. rubber specimens shall not be introduced.

, (p) The non-volatile residue from Step (o) shall be compared with

• that from Step (m) (with the rubber specimens). See 6.5.

" (q) Allow the exposed rubber specif_ns (from Step (m) above) to

air-dry for 24 hours and then measure and test them for the

properties specified in Table I. The results shall conform

to the requirementsof Table I.

The results of this test shall conform to the requirements of Table I

and also the compatibility portion shall conform to the requirements
of 3.3.1 (b) when 3.3.1 (b) is applicable.

4.3.7 Examination. Test samples and parts shall be carefully

examined visually to determine conformance with all of the requirements

of 3.3, except for 3.3.]. For 3.3.1 (a) and 3.3.1 {c) requirements the

test samples a,,dparts shall be examined both visually and by hand mani-

pulation (as described in the two paragraphs) to determine that they

meet all of the requirements of the two paragraphs (See 4.3.6 for com-

patibility test for 3.3.1 (b) requirements).

5. PREPARATION FOR DELIVERY

5.1 Cleaning. Test slabs and test buttons shall be flushed and/or

immersed in fresh isopropyl alcohol, TT-I-735, Grade A, to c_ean them

prior to packaging. Molded parts may be scrubbed if deemed necessary;

EI-g
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, however caremust be exercisedso that the surfacetextureof the

_ parts remainsundisturbed.Ultrasoniccleaningof parts is an accept-

able alternatemethod.
¢

_ 5.2 Packaging and Packing. Test slabs, test buttons, and molded

_ partsshallbe packagedindividuallyin heat-sealedpolyethylenebags.

6. NOTES

6.1 IntendedUse. The elastomericmaterialsoecifiedhereinis

intendedprimarilyfor use in aerospacesealingapplicationswhich

{ requireexcellentresistanceto solventeffectsof hydrazinesystems.

6.2 Hydrazineis a hazardouschemical. One not completelyfamiliar

with its use should refer to "Dangerous Properties of Industrial Materials"

by N. irvingSax.

, 6.3 HydrazineDecomposition.Hydrazinedecomposedby rubber

generatesgas pressurewhich can be measuredby a gaugefittedto a

closedstoragetube. The amountof pressureriseis inverselyrelated

• to the "compatibilityindex"of the rubber. Spuriousresultscan be

obtainedif the rubberor apparatusis not cleanedthoroughly. In

addition,the correctsample/propellant/ullageratiomustbe used

becausea changein any one weightor volumecan influencethe pressure.

6.4 Non-VolatileResidue. A specificvalueor range can not at

this time be specifiedfor the amountof non-volatileresiduefromthe

, propellantevaporation.Nevertheless,rubberformulationchemistscan

make evaluationsof the qualityof the rubberfromthesedata.

i
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C, '"_- _ APPENDIXE-2
•_- ,,ATER,,I.)rr.u_r11,_;IuN (PRELIMINARY)

_ _"_. RUBBER

,, DESIGNATION:AF-E-124D

/. ,_;._ I . SCOPE

_; I.I Scope. This materialspecificationestablishesthe requirements

for an elastomer compound intended specifically for seals.

1.2 Classification.The designationof this materialis AF-L-lZ4L)

2. APPLICABLEDOCUMENTS

SPECIFICATIONS

Federal

O-A-5] Acetone,Technical

_ _, TF-1-735 IsopropylA1cohol
• 0ther

MIL-P26536 Propel]ant,Hydrazine
MSC-PPD-2B PropeIIant,DinitrogenTetroxide

OTHER PUBLICATIONS

AmericanSocietyfor Testingand Materials

ASTM D 15 Compoundadd SamplePreparationfor

PhysicalTestingof RubberProducts

ASTM D 395 CompressionSet of VulcanizedRubber,
ITests for

ASTM D 412 "- TensionTestingof VulcanizedRubber

ASTM D 624 Tear Resistanceof VulcanizedRubber,

Tests for

ASTM O 1460 Changein LengthOf an Elastomeric

VulcanizateResultingfrom Immersion
Q

in a Liquid,Test for

E2-I
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AmericanSocietyfor Testingand Materials(Cont'd)

ASTM D 1708 TensilePropertiesof Plastics

:. Use of MicrotensileSpecimens,
Test for

ASTM D 2240 IndentationHardnessof Rubber
and Plastics_Means of a

Dur_eter, Test for

. 3. REQUIREMENTS

3.1 Material. The materialshallbe AF-E-124DElastomer,

formulatedand processedto meet the requirementsof this

specification.The compositionof the base polymershall be

(byweight):

Approx.60% Tetrafluoroethylene(TFE)

Approx.40% PerfluoromethylVinylEther (PMVE)

• _ 2% PerfluorophenylVinylEther (PPVE) _

As suppliedby E. I. du Pontde Nemours& Companyunderthe

designationAF-E-124D..

The cure and post-curescheduleshallbe as specifiedin

: Table I.

Table I. Cure & Post CureSchedule

iiii i 111

i Press: 30 m_n_ltes/177°C(350°F), t
Air Oven: RoomTempematureto lSO°C(300°F) ,

' over 4 hours

24 hours/150°C (300°F)

24 hours/177°C (350°F)
24 hours/204% (400°F)
Ratted from 204% (400°F) to
28S°C fSSO_F)over 6 hours

24hours/2aS'C(SSO'r)i iii i a I •

.. E2-2
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I All materials shall be of high quality and suitable for the purpose
intended, and free of impurities reactive with nitroguw,tetroxide,

hydrazine, UDMH, _H, or a 50/50 blend of hydrazine and UDMH.

3.2 physic.alProperties. Physical properties shall conform to

the requirements specified in Table I, for Oxidizer Service and Table

II for Fuel Service. For Bipropellant Service the requirements of both

Tables must be met.

3.3 Workmanship. Each molding shall be free of functional defects,

foreign materials, and shall be uniform in quality; it shall also be free

from mold flash unless otherwise permitted'by the specific test method.

There shall be no visible evidence of surface irregularities, such as

unbonded sections, excessive holes or dents, blisters, and pits greater
than 0.005 inch in height or depth. Small surface blemishes less than

•, 0.005 inch in height or dcpth shall not be allowed when grouped closely

_ together and cover more than IO percent of the total surface area.

; 3.3.1 Pigmentation. Markings on the rubber surface which appear

• _', " to be two di_,ensional(i.e., appear to be a discoloration rather than an

inclusion) shall be acceptable as long as the following criteria are met:

i (a) The discL_]oredportion does not affect the flexed morphology

of the rubber.

(b) The discolored portion does not react - same t

compatibility requirement as in Tables I and If.

(c) The discolored portion does not slow any t_ndency, upon

repeated flexing, of separating from the rubber substrate.
i

4. QUALITY ASSURANCE PROVISIONS 1

4.1 Qualification. Materials supplied to this specification shall

ha_e been qualified in accordance with all of the requirementR of this

specification.

" E2-3 i
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Table I. PhysicalPropertiesfor OxidizerService

Property V Requirement
I

Original:

Tensilestrength,psi,min 1500

Elongation,% 185+ 25

Hardness,Type A Durometer 78 - 90

Tear strength,Ib/inch,min. 140

" Followingexposureto conditionsas specified:

Compressionset, 22 hours at 200°F,

24-hourrest,% max. (MethodB) 40

Fluidresistance,N204 immersions,
i lO0 hoursat 16OF,Air Dry at R.T.Days

Tensilestrength,% of originalvalue (at 75°F) (min) 70

Elongation,% of originalvalue (at75°F) 85 - 150

Table II. PhysicalCharacteristicsfor Fuel Service

Property Requirement

Original:

Tensilestrength,psi, min 1500

Elongation,% 185+_25

HardnessType A durometer 78 - 90 t

Tear strength,Ib/inch,min. 150

Followingexposureto conditionsas specified:

Compressionset MethodB, 22 hours at 70-75°F 15

22 hoursat 200°F 40

24-hourrest,% maximum

i FluidResistance,N2H4 immersion
_' I00 hoursat 160°F,Air Dry for 7 daysat roomtemp.

Tensilestrength,(%of originalvalueat 75°F) 90

Elongation,% of originalvalue (at 75°F) 90

! 3
Compatibility,Pressurerisepsi,max at 200°F 15 L '_:':(greaterthanconi:-olcontainer) ......

E2-4
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'Z_! Ilk 4.1.I Qualification Certification. Tilesupplier submitting mate-
IF

,_ rial for qualification shall provide ce-tification that the materials

•;'- submitted conform to all of the requirements of this specification and
jr.,

.._,. represent normal production run material.
}_-',

_: 4.1.2 Qualification Sampling. Qualification sampling shall
_._ include two test slabs prepared in accordance with the requirements of

:_ ;_ ASTM D 15 and two molded compression set buttons prepared in accordance

¢_ with ASTM D 395, Type I.

CAUTION: No marking shall be affixed or applied to a sample, only

_i to the package in which it is contained. (See Section 5

for cleaning, packaging, and marking requirements.)

4.1.3 Qualafication Testing. Qualification testing shall consist

;.' of demonstration of conformance t_ all of the requirements of this

_.;: specification

' 4.1.4 Qualified Status and Requalification. A material that has

." been qualified in accordance with this specification require requalifica-

tion for any change of raw materials and/or processing from that used41,

• ;,_ for qualification.

:' 4.2 Acceptance.

Certification. The supplier of material shall

4.2.1 Acceptance

._ certify that each shipment of,material made to this specification con-

forms to all of the requirements of this specification. Certification

shall include the actual results of laboratory tests to determine

conformance. _

4.2.2 Acceptance Sampling. ' i
i\

4.2.2.1 Batch. A batch shall be the quantity of material com-

pounded on,a mlll at one time. _

4.2.2.2 Preproduction Sampling. Preproduction sampling shall

include from each batch two te_t slabs prepared in accordance with the

requirements of ASTM D 15 and two molded compression set buttons pre- .:_;

pared in accordance with ASTM D 395, Type I. i

, i.. E2-5
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I' 4.2 2 3 Production 5,,mpling. Production sampling shall include

each production item.

" CAUTION: No marking shall be affixed or applied to a sample or

•_ to a molded part only to the package in which the item9

I is contained (See Section 5 for cleaning packagingJ_ • $ $

"-" and marking requirements)

4.2.4 Acceptance Testing.

4.2.4.1 2reproductionTesting. Prior to the startof a production

run for each batch of material the preproduct_en samples shall be tested

to all of the requirementsof this specification.

4.2.4.2- Production Testing. Each production item and subsequently

the packaging for the item shall be inspected to determine conformance

with the requirementsof 3.3 and Section5, respectively.
". J

4.2.5 Rejection. Sample material and production items failing

to meet the test requirements in 4.2.4 shall be rejected.

• 4.3 Test Methods. Qualification and acceptance testing of the
_ J.

material to the requirements of this specification shall be in accord-

ance with the following:

"4.3.1 Tensile Strength and Elongation. The tensil_ strength and

ultimate elongation shall be determined in accordance with the require-

ments of ASTM D 412, usingDie "D" for the specimens. Resultsshall

conform to the requirementsof Table I.

4.3.2 Hardness. The hardnessshallbe determinedin accordance
, with the requirementsof ASTMD 2240. Resultsshall conformto the

, requirements of Table I.

4.3.3 Tear Strength. The tear strengthshallbe determinedin

accordancewith the requlrementsof ASTM D 624, usingDie "B". Results

shallconformto the requirementsof Table I.

)
¢
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4.3.4 CompressionSet. The compression set shall be determined

in accordarce',iththe requircmentsof ASTM D 395,,4ethodB at the

aging time and temperaturespecifiedin Table I. ResultssF'll conferm

to the requirementsof Table I.

4.3.5 Fluid Resistance. The procedureoutlinedbelow is used to

determinethe fluid resistanceand the relativecompatibilityof tile

rubberspecimens.

(a) Cut three specimensof tilerubberfrom a test slab,using the

i ASTM D 1708die.

(b) Clean the specimensusing in sequencea detergentsolution.

O-A-51acetone,and finallyreagentgrade isopropylalcohot.

Dry for 5 minutesat ambienttemperaturein a dirt/dust-free

environment.Do not handlewith bare hands.
T"

(c) Measurethe'lengthand weightof each specimen.

• (d) Using rubbergloveswhich have been pre-rinsedin isopropyl

" alcoholand dried,place the rubberspecimensinto the botto:Ti

of ar,85 cc glass AcrosilCompa.I:ibilityTube (e.g. VWR

ScientificCompanyCatalogNo. 62810-000)precleanedand dried

as in (b) above. The tubemust have at least a lO0 psig

¢ safetyrating. The primarycap sealmust be Teflon and the

secondaryseal shall be cut from the test slab. i

i (e) Add slowly50 ml of MIL-P-26535hydrazineto each tub

i WARNING: This stepmust be performedwith care by a propellant

handler;hydrazineis a dangerouschemical.

(f) The AerosllCompatibilityTube shall be fit.edwith all 304 _mL

CRES fixtures,tubing,gauges,and valvesas follows:

To the threadedflangecap attacha "T" fitting. From

one leg of the "T" attacha I/8 inch tubing(See (g)

below)leadingto a compoundBourdon'typepressuregauge

(calibratedin inchesof Hg on the vacuumsideand in

pslaon the pressureside;a convenientsize is 0 to TO0

ps a).

E2-T
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...........v ,,_=use uu,_h_u fitLilJgsto interface from

pipe tnreads to other types such as AN, because

bulkheaJ fittings require O-rings for sealing.

Fitting threads shall be wrappud with TFE pipe

tape prior to assembly. The whole assembly,

prior to fitting on the tube, shall be rinsed

In isopropyl alcohol and dried (See (b) above).

(g) Place the Aerosil Compatibility Tube and the valve inside an

ovcn at room temperature. The oven shall have been precali-

brated to the desired temperature (See Table I). Pass the

1/8 inch tubing (see (f) above) through the ove_ wall so that

the pressure gauge can be maintained near ambient temperature.

The total volume of the 85 cc tube, fittings, gauge, valve.

and tubing should be approximately 95 cc.

(h) Place the oven in a bunker or test cell which has a viewing

window through which the pressure gauge may be observed.

WARNING: A power switch for the oven shall be placed outside

the test bay in order to turn off the oven if the

pressure approaches the safe limit of the glass

compatibility tube. If this occurs, the oven must
t

be turned off immediately inasmuch as excessive

pressure can be quite dangerous.

(i) Connect the valve to a vacuum pump isolated from the hydra-

zine by a cryogenic trap (CRES or glass tubing and fittings _;

from the valve to the trap) and evacuate the apparatus for

several minutes, or until the hydrazine ceases to bubble

(outgm_sing has ceased), The compound gauge must indicate a

vacuum of at least 28 inches of Hg. Close the valve and dis- I.

connect the vacuum pump.

.#j# J
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(j) Check the system for zero leakage by reading the compound

gauqe after 30 minutes. _1_m_-:+o any I -'- . When. . ........... ea_a.q_ the

system is leak-free, turn on the oven to the calibrated

temperature and when the oven reaches the desired temperature,

start the storage time.

(k) At the end of the required storage time (or before, see (h)

above) record the pressure and turn off the oven. Cool to

ambient temperature (at least several hours), record the

pressure again and vent the valve to relieve any residual

pressure.

(1) In a well-vented fume hood remove the flange cap, decant the

propellant and, while stil_ working in the fume hood, place

the specimens on laboratory wiping tissues (Kimwipes, Kimberly-

Clark Company, are satisfactory) and carefully blot dry. Then

remove the specimens, using the same clean gloves described in

(d) above.

_- WARNING: Do not use a sulfite-type paper for blotting inasmuch

as this paper in contact with hydrazine is a flre hazard.

(m) Measure the blotted sa.qlplesfor length and weight. Calculate

the length and weight change. The volume change may be cal-

culated from the length change in accordance with ASTM D 1460. t

(n) In a clean, pre-weighed round bottom flask carefully evap_rate

to dryness an aliquot of the decanted propellant and then

calculate the propellant's non-volatile residue in milligrams

per I00 mllliliters (mg/lO0 ml) as thd units.

WARNING: This step must be done carefully and in a safe place by....

a propellant ha,'dler;the procedure can be very dangerous.
f

(o) A control propellant samp;e shall be processed in accordance 1
(

wlth Steps (d) through (n) exactly as above except that the

rubber specimens shall not be introduced.

E2-9 ,_
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(p) The non-volatileresiduefrom _ _p (o) shall be conN)aredwlth

that from Step (m) (with the r;,bo_r specimens). See 6.5.

(q) Allow the exposed rubber specimens (from Step (I) above) to

air-dry for 24 hours and then measure and test them for the

properties specified tn Table I. The results shall conform

to the requirements of Table I.

The results of thts test shall conform to the requtrm_nts of Table I

and also the compatibility portion shall conform to the requirements

of 3.3.1 (b) when 3.3.1 (b) ts applicable.

4.3.7 Examination. Test samples and parts shall be carefully

examined vtsually to detemtne conformance with all of the requirements

of 3.3, except for 3.3.1. For 3.3.1 (a) and 3.3.1 (c) requirements the

test samples and parts shall be examined both vtsually and by hand mnt-
!

pulation (as described tn the two paragraphs) to determine that they

mee_all of the requirements of the two paragraphs (See 4.3.6 for com-

patibility test for 3.3.1 (b) requirements).

5. PREPARATIONFORDELIVERY "_

5.1 Cleantn_l. Test slabs and test buttons shall be flushed and/or

immersed in fresh tsopropyl alcohol, TT-I-735, Grade A, to clean them

prior to packaging. Molded parts may be scrubbed iF deemednecessary;

however,care must be exercised,so thatthe surfacetextureof the

parts remainsundisturbed.Ultrasoniccleaningef parts is an accept-
able alternatemethod.

5.2 Packagln_]and Packing. Test slabs,test buttons,and molded

parts shallbe packagedIndlvld.,_allyin heat-sealedpolyethylenebags.

6. NOTES

6.1 Intended Use. The materlalspecified herein ts intended

for Aerospace Seal Applications requiring a high degree of compat-

Ibility with nitrogen tetroxide and hydrazine base fuels.
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-_ 6.2 NitrogenTetroxideTestTechniques.Nitrogentetroxideis a

i hazardousand toxicchemical. Testingand handlingmust be accomplished
only by experienced personnel. Specific test techniques should be estab-t

_I fishedand documentedfor the requiredcompatibilitytests

1 6.3 Hydrazineis a hazardouschemical. One not completelyfamiliar

/I with its use shouldrefer to "DangerousPropertiesof IndustrialMaterials"

=_ by N. IrvingSax.

-_ 6.4 HydrazineDecompositions.Hydrazinedecomposedby rubber

generatesgas pressurewhich can be measuredby a gauge fitted,toa

_. closed storage tube. The amount of pressure rise is inversely related

to the "compatibility;ndex"of the rubber. Spuriousresultscan be

_ obtainedif the rubberor apparatusis not cleanedthoroughly. In

addition,the correctsample/propellant/ullageratiomust be used

becausea change in any one weightor volumecan infl_encethe pressure.

6.5 Non-VolatileResidue. A specificvalueor range can not at

this time be specified for the amount of non-volatile residue from the

-? Z propellant evaporation. Nevertheless, rubber formulation chemists can

_-- make evaluationsof the qualityof the rubberfromthese data.

,!
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